160. A Characterization of Lukasiewiczian Algebra. I

By Corneliu O. SICOE

Calculus Centre of the Bucharest University (Comm. by Kinjirô KUNUGI, M.J.A., Oct. 12, 1967)

In his papers [1], [2], using an algebraic technique, Prof. K. Iséki gave a characterisation of Boolean algebra. In this paper, I shall give a characterization of three-valued Lukasiewicz algebras, which were introduced by Prof. Gr. C. Moisil [3] as models for J. Lukasiewicz three-valued propositional calculus [4].

A *L*-algebra is a system $\langle X, 0, *, \sim \rangle$ where 0 is an element of a set X, * is a binary operation and \sim is a unary operation on X such that the axioms given below hold. We write $x \leq y$ for x * y = 0, and x = y for $x \leq y$ and $y \leq x$.

```
L1) x*y \leq x,
```

- $L2) \qquad (x*y)*(x*z) \le z*y,$
- L3) $x*(x*(z*(z*y))) \le z*(z*(y*(y*x))),$
- $L4) (x*z)*((x*z)*(y*z)) \le (y*z)*(y*x),$
- L5) $x \leq x * (\sim x * x),$
- $L6) x*(x*\sim x) \le \sim (y*(y*\sim y))),$
- $L7) x*\sim y \le y*\sim x,$
- $L8) \qquad \sim x * y \leq \sim y * x,$
- L9) $0 \le x$.

Further we shall prove some proposition from the axioms L1-L9. If we substitute y*z for z in L2, then by L1, L9 we have

 $(1) x*y \le x*(y*z).$

In (1) if we put y=x, $z=\sim x*x$ and use L5, L9, then we have

(2) x*x=0.

By L1, L9 we have

0 * x = 0.

In L3 put z=0, then by (3), L2 we have

(4) x = x * 0.

By L2 we have the following lemmas.

Lemma 1. $x \le y$ implies $z * y \le z * x$.

Lemma 2. $x \le y$ and $y \le z$ imply $x \le z$.

Let us put z=y in L3, then by L1, (2), (4), Lemma 2, we have

 $(5) x*(x*y) \leq y.$

By L2 and Lemma 1 we have

(6) $u*(z*y) \le u*((x*y)*(x*z)).$ In (6) put x=x*u, z=x*z, u=((x*u)*y)*(z*u) then

```
(((x*u)*y)*(z*u))*((x*z)*y)
           \leq (((x*u)*y)*(z*u))*(((x*u)*y)*((x*u)*(x*z))).
    The right side is equal to 0 by (6), hence we have the following
(7)
                       ((x*u)*y)*(z*u) \le (x*z)*y.
    In (7) put y=z, z=x*z, u=y, then by (5) we have
(8)
                        (x*y)*z \leq (x*z)*y.
    By (5) and Lemma 1 we have
(9)
                           x * y \le x * (x * (x * y)).
If we substitute y for z in L3, then by (2), (4) we have
(10)
                      x*(x*y) \le y*(y*(y*(y*x))).
    By (10), (9), and Lemma 1 we have the following
(11)
                           x*(x*y) \leq y*(y*x),
hence
(12)
                            x * (x * y) = y * (y * x).
    In L7 put y = \sim x, then by (2) we have
(13)
                                 x < \sim \sim x.
    Let us put x = \sim x, y = x in L8, then, by (2) we have
(14)
                                 \sim \sim x < x.
hence
(15)
                                 x = \sim \sim x.
    By (15), L7 we have
(16)
                               x * y = \sim y * \sim x,
hence we have the following
     Lemma 3. x \le y implies \sim y \le \sim x.
     By L3, (12) we have
(17)
                   x * (x * (y * (y * z))) \le z * (z * (y * (y * x))).
     If we put x=z, z=x in the formula above, we have
(18)
                z*(z*(y*(y*(y*x))) \le x*(x*(y*(y*z))),
hence
(19)
                  x*(x*(z*(z*y))) = z*(z*(y*(y*x))).
     By L1, L5 we have
(20)
                              x = x * (\sim x * x).
     By (8) we have the following
     Lemma 4. x*y \le z \text{ implies } x*z \le y.
     By L2 and Lemma 4 we have
(21)
                            (x*y)*(z*y) < x*z
     hence
     Lemma 5. x \le z implies x * y \le z * y.
     Let z \le x. By Lemma 1 we have \sim x * x \le \sim x * z and by Lemma
3, \sim x \leq \sim z and applying Lemma 5, we have \sim x * z \leq \sim z * z.
     Hence we have the following
     Lemma 6. z \le x implies \sim x * x \le \sim z * z.
```

By L4 we have

Lemma 7. $y*z \le y*x$ and $x*z \le y*z$ imply $x \le z$.

If we define $x \cap y = y*(y*x)$, $x \cup y = \sim (\sim y*(x*y))$, $\mu x = \sim (\sim x*x)$ and $1 = \sim 0$, then we shall prove that a *L*-algebra is a three-valued Lukasiewicz algebra.

I. $x \cap y = y \cap x$; $x \cup y = y \cup x$ are proved by $x \cap y = y * (y * x) = x * (x * y) = y \cap x$ and $x \cup y = \sim (\sim y * (x * y)) = \sim (\sim y * (\sim y * \sim x)) = \sim (\sim x * (\sim x * \sim y)) = \sim (\sim x * (y * x)) = y \cup x$.

II. $x \cap (x \cup y) = x$; $x \cup (x \cap y) = x$

are proved by $x \cap (x \cup y) = (y \cup x) \cap x = x * (x * \sim (\sim x * (y * x))) = x * ((\sim x * (y * x))) * \sim x) = x * 0 = x \text{ and } x \cup (x \cap y) = (y \cap x) \cup x = \sim (\sim x * ((x * (x * y))) * x)) = \sim (\sim x * 0) = \sim \sim x = x.$

III. $x \cap (y \cap z) = (x \cap y) \cap z$; $x \cup (y \cup z) = (x \cup y) \cup z$

follow from $x \cap (y \cap z) = (y \cap z) \cap x = x * (x * (z * (z * y))) = z * (z * (y * (y * x)))$

 $=(x\cap y)\cap z$ and $x\cup (y\cup z)=(y\cup z)\cup x=\sim (\sim x*(\sim (\sim z*(y*z))*x)$

 $= \sim (\sim x * (\sim x * (\sim z * (\sim z * \sim y)))) = \sim (\sim x * (\sim x * (\sim y * (\sim y * \sim z))))$

 $= \sim (\sim z*(\sim z*(\sim y*(\sim y*\sim x)))) = \sim (\sim z*(\sim (\sim y*(x*y))*z))$ = $(x \cup y) \cup z$.

IV. $x \leq y \stackrel{\longrightarrow}{\longrightarrow} x \cap y = x$.

If $x \le y$, i.e. x * y = 0, then $x \cap y = y * (y * x) = x * (x * y) = x * 0 = x$. Conversely, if $x \cap y = x$ i.e. y * (y * x) = x, then x * (x * (x * y)) = 0, hence x * y = 0.

By I—III a *L*-algebra is a lattice, and by IV, \leq is the order. V. $x \cap y \leq z$ and $x \leq y \cup z$ imply $x \leq z$.

If $x \le y \cup z$, then $x \le \sim (\sim z * (y * z))$ i.e. $x * z \le y * z$ and if $x \cap y \le z$, then $y * (y * x) \le z$ i.e. $y * z \le y * x$.

Applying the Lemma 7 we have V.

By I—V we have (see [5] p. 137) that a L-algebra is a distributive lattice.

VI. $x \cup 1 = 1$

is proved by $x \cup 1 = \sim (\sim 1 * (x * 1)) = \sim (0 * (x * 1)) = \sim 0 = 1$.

VII. $\sim \sim x = x$

is proposition (15).

VIII. $\sim (x \cap y) = \sim x \cup \sim y$

follows from $\sim (x \cap y) = \sim (y * (y * x)) = \sim (y * (\sim x * \sim y)) = \sim x \cup \sim y$.

IX. $x \cap \sim x \leq y \cup \sim y$

follows from axiom L6.

According to I—IX a L-algebra is a Kleene algebra.

 $X. \sim x \cup \mu x = 1$

is proved by $\sim x \cup \mu x = \mu x \cup \sim x = \sim (\sim x * x) \cup \sim x = \sim ((\sim x * x) \cap x)$ = $\sim (x * (x * (\sim x * x))) = \sim 0 = 1$.

XI. $x \cap \sim x = \sim x \cap \mu x$

732 C. O. SICOE [Vol. 43,

follows from $x \cap \sim x = \sim x * (\sim x * x) = \sim (\sim x * x) * x = \sim (\sim x * x) * (x * (\sim x * x)) = \sim (\sim x * x) * (\sim (\sim x * x) * \sim x) = \sim x \cap \mu x.$

XII. $\mu(x \cap y) \leq \mu x \cap \mu y$.

If we substitute y*(y*x) for z in Lemma 6, then we have $\sim x*x \leq \sim (y*(y*x))*(y*(y*x))$ hence $\sim (\sim (y*(y*x))*(y*(y*x)))$ $\leq \sim (\sim x*x)$ whence $\mu(x \cap y) \leq \mu x$. For z=y*(y*x) and x=y in Lemma 6 analogously we have $\mu(x \cap y) \leq \mu y$, hence XII.

A Kleene algebra such that the conditions X—XII are satisfied is a three-valued Lukasiewicz algebra [6].

Hence we have the following

Theorem. A L-algebra is a three-valued Lukasiewicz algebra.

References

- [1] K. Iséki: Algebraic formulations of propositional calculi. Proc. Japan Acad., 41, 803-807 (1965).
- [2] —: A characterization of boolean algebra. Proc. Japan Acad., 41, 893-897 (1965).
- [3] Gr. C. Moisil: Recherches sur les logiques non-chrysippiens. Ann. Sci. Univ. Jassy, **26**, 431-436 (1940).
- [4] J. Lukasiewicz: O logike trojwartosciowej. Ruch. filoz., 5, 169 (1920).
- [5] H. B. Curry: Foundations of Mathematical Logic. New York (1963).
- [6] R. Cignoli: Boolean elements in Lukasiewicz algebras. Proc. Japan Acad., 41, 670-680 (1965).