
708 Proc. Japan Acad., 43 (1967) Vol. 43,

155. On Some Integral Equations with
Normal Integral Operators

By Sakuji INOUE
Faculty of Science, Kumamoto University

(Comm. by Kinjir5 KUNUC,I, .Z.A., Oct. 12, 1967)

In the present paper we deal with the construction and the
function theoretical properties of solutions of some integral equations
with normal integral operators.

Definitions of notations. Let A be a Lebesgue p-measurable set
of finite or infinite measure in m-dimensional real Euclidean space
R; let L.(A, p) be the Lebesgue functionspace; let {(x)}=,, and
{@,(x)},=,, be both incomplete orthonormal systems such that the
union of them forms a complete orthonormal system in L,.(A, p); let
((f)) be the bounded normal operator in the Hilbert coordinate space
l, corresponding to an infinite bounded normal matrix (fi.) with

][/9,. ["A=l/9. [:>0 (i-1, 2, 3, .); let () (p

n) where f)-f (i, i-1, 2, 3, ...); let {2}=,,,.. be any infinite
bounded sequence of complex scalars; and let N be integral operators
defined by

(p 1, 2, 3, ..., n; h(x) e L.(2, p)),
where c is an arbitrarily given complex constant. Then, as we
discussed before 1, N is a bounded normal operator in L(A, p) and
N,-Nf.

Theorem 1. Let g(x) be any given function in L(A, p) such
that it consists of all of (x), ,(x); let (p= 1, 2, 3,..., n) be the

roots of the equation +,a2- 0 with complex coecients a;
let {2} be everywhere dense on an ppen or a closed rectifiable Jordan

curve; let sup lL I> cl I/ I" c; and let

Then the integral equation

(1) 2f(x) + a2-N,f(x)= g(x)
has a uniquely determined solution

(2) f(x) c ( ,)-9.(x) +1 g(x) ,c,9(x)
--I p-’l =i

..., . e p),
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where c-(g, ,)= I g(x)(x)dp(x) and (, ., ..., ,)-,,...,=
J.. for ij...l and --i+J +... + l

3 -k. Moreover, ifweset
Z(2)=(f, h) for an arbitrarily given h(x) e L(A, p) such that it con-
sists of all of (x) and @(x), M(r) max z(re) (a<r< ), and

8[o,]

1+log z(re-’) dt (a<r(),m(r’ ) 2
and denote by F a rectifiable closed Jordan curve containing the
disc [2a inside itself, then the function Z(2) enjoys the following
properties:

{:(for everyzinsideF)
(A)

2i r (2-z) (k-l)! (for every z outside F),

where the complex line integral along F is taken counterclockwise;
(B) M(r’) M(r) for a<r<r’< and M(r) as

(C) Jo Jr(re’t)dt-a(r)= <

where

a,(r) - z(ret) cos t dt (a<r< oo);

log /1 +l)(re-t) ] dt (a< r< co),(D) if we put T(r) -2o
then T(r) is not only a monotone decreasing function of r but also
a convex function of log r;

(E) if, for any large positive number G, there exist a positive
constant p(7 in a bounded open interval (a, l) (a<l<co) and a set
A(e), with positive measure m, of angles 0 such that the in-
equality Z(pe-) ]>G holds for every 0 e A() and that inf m>0,
then, for uncountably many complex numbers {c} chosen suitably,
Z(2) has a denumerably infinite number of c-points () (/= 1, 2, 3,
..), repeated according to the respective orders, in the domain

D{2" al 2 I co} such that any accumulation point of them lies on

the circle 2 l-a and that the positive series .(I() l-a) is divergent;

(F) if {}=,., are all distinct roots of D+,aD-=0 and

the order of is denoted by m, then

lim re(r, oo m(m+ 1)
-o+0 log F(r- a)-1] =,=1

<
2 (’,=1 m-n).

Proof. It is verified at once that the given integral equation

(1) is rewritten in the form II(2I-{N).f(x)-g(x) and moreover
Io--1
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that II Nll-max {sup l2 I, ctll (())ll} V_l]. On the other hand,
since -] Ifl(oo by hypothesis, we have for any -(, ., a,

,=1

...)el

nd hencel ((Z,)); ;Z, ;. THst inequality nd thepot-
<,=i

eses on sup and a lead us to the result that the solution of(l)
is given by

(-,)-K()() (<1 I<)

= = {z:zlsp}-[}p=
where c-(g, ) and {K(z)} denotes the complex spectral family of
N. In addition,

(a-,)-g()()

1. z dK(z)g(x)

1 1+ (, , ..., )z dK(z)g(x)

g(x)-c(x)+ (, ;, ., )cZ(g, e)Z()e(x)
= = =

where (, , ..., f) denotes the sum ,...,=... under the

conditions igjg.., gl and i + +... + 1 _k. Hence we have the

desired solution () holding for lmos every . urhermore,
if we denote he subspees deermined by {} nd {,} by nd

respectively and se 9-g+g where g and g , hen

and

1-I (2- ,z)-dK(z)g(x) __< (] 2 [- II g
{z: zl supl 1}-{}

Consequently the right-hand side of (2) is of course an element of
L(, p).

We next consider the function Z(2)-(f,h)-(fI-NO-g,h)
(<2<) defined in the statements of the present theorem.
we denote by , the continuous spectrum of N, then every point
of the sets {,2}.=,,,...,. and {.A}=, is a singularity of

=1,2,3,-
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(,(,I- N)-g, h) for the domain {2" 12 I< c} but this function is

regular elsewhere. Now, we have

%,(,t) ( ,z)-dg(z)g, h

and here (2-z)- is decomposed by partial fractions. In addition,
the ordinary part of () is zero. Accordingly we can establish (A)
by the same reasoning as that used to prove Theorem 30 in my
previous paper [2 and can derive the expansion

1 z(re) cos t dt, a r c, 0 1a,(r)-
7

from the same method as that applied to prove Theorem 36 in the
same paper. By making use of this expansion, we can also establish
(B) and (C), as will be found from the method of the proof of
Theorem 43 in [3. Furthermore (D) and (E) are shown by reason-
ings exactly like those applied to prove Theorem 48 in [4 and to prove
Theorem 55 in [5, respectively.

Lastly we shall turn to the proof of (F).
By the definition of m we can write

f(x) (2I- N)-g(x) (a< <

NA(z)(2 z)-dK(z)g(x),

where any A)(z) is a rational function of z such that A)(z)]<
for [z] sup ILl. On the other hand, if we put

K=max{ sup A)(z) }
a, zsup

then

A)(z)(, z)-dK(z)g

( re, a sup ; < < r< co),
so that
+ +
log 2:(re-t)I log (fe-,,

m +
log [K(r-a) ] g ]] ]] h ] + log n

+ log[(r-a)-]+nlog[K]g]

This final inequality permits us to conclude that

li m(r’ ) m(m+ I)
-+0 log (r-a)-3 = 2
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as we wished to prove.
Theorem 2. Let all the notations defined in the statements

sup
of Theorem 1 be again used here, and let a’= c. Then

the integral equation

() No+Na,,ar_, f() () (a O, No L ’<1 I<)
ha iqee detemieg oetio

a= ,/
(x)+

If we set

()- (L, h), (r)= max (re’) ], g(r)__1(re,t) cos ,t dt,

and
1 12 +

(r, c) -j0 log (re-t) dt

for any r with a’rc, then the results exactly analogous to (A),
(B), (C), (D), (E), and (F) hold for (x), I(r), g(r), (r, ), and a’;
moreover if we denote by F a rectifiable closed Jordan curve contain-
ing the disc 2 max{a, a’} inside itself, then

(5) Z(2)(2)- 2i r

(max{a, a’} <12 < ),
where F is positively oriented.

Proof. Since, by the hypothesis on , the roots of the equa-

tion 1+ a 0 are given by (p- 1, 2, 3, ..., n), it is easily verified

that the given integral equation (3)is rewritten a 2- f(x)-g()

and hence that (4) is the unique solution of (3). It is also clear that
the results exactly analogous to (A), (B), (C), (D), (E), and (F) are
valid for (), (r), g(r), (r, ), and a’. Suppose that F lies

tinside the circle C_: [
and that C is positively oriented. Then, by Cauchy’s theorem, we have

/" e’) Nm() N( o
2x< r

r’+{m(r)a,(r) + (r),-(r)+"" + ,(r)(r)},

kE / k /
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both are uniformly convergent with respect to . Since, on the
other hand,

.={a(r),(r) + a(r)._(r) +... + a.(r)(r)}

we have the desired relation (5).
z()() d- 0 (s- 0, 2,Remark 1. 2wi r_ ’

).

Remark 2 (2) 1 -()d (a’ <] 2 ]< ).

Remark 3. The same resu]t as that of Theorem 4 n [ ho]ds
for the dstrbuton of ’-ponts of %() n he domain {: < <},
provided that s dened as n he sstements of Theorem i.
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