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154. On Some Generalised Solution of a Nonlinear
First Order Hyperbolic Partial Differential Equation

By Takaaki NISHIDA
(Comm. by Kinjiré KUNUGI, M.J.A., Oct. 12, 1967)

We consider the following Cauchy problem in >0, — oo << + oo,

ow | of(u) _
(1) ¥+ p = h(w)
(2) w(0, ¥)=ux),

where f(u)e C? h(u)e C*' and wux)e L.
First we assume that f,,(u)>0>0 for Yu.

Oleinik [17] proved the uniqueness and existence theorem of the
generalised solution for Cauchy problem wu,+f(¢, x, w),=9(t, «, u)
with (2) under the condition f,,> const. >0 and | g,(¢, , )| < const.
Here we consider the case that |g.(¢, , w)|< const. is not satisfied
and see that the uniqueness and existence theorem is valid for some
case under the following definition of the generalised solution.

We call u(t, ¢) the generalised solution of (1)(2), which satisfies
the following:

i) wu(t, x) is a measurable and locally bounded function.

ii) for arbitrary continuously differentiable function ¢(¢, x)

with compact support

+oo

(3) S S[“Z_f +f (u)_‘;.% + h(u)¢]dt da+ S ©(0, x)uy(x)dx=0.
iy =
4 i w;):z(t’ %) < Kt 3, ),

where K(t, ,, 2,) is continuous in ¢>0, —co<®,, 2,< + o0,

§1. Uniqueness Theorem. We have the following uniqueness
theorem.

Theorem. The generalised solution u(t,x) of (1)(2) is unique
under the following estimate.

(5) —B)<u(t, x)<a(t, x) for t>0, 2>0,

—a(t, —x)<u(t, x)<B(t) for t=0, x<0,
where B(t), a(t, x) are nonnegative and continuous in {t=>0}, {t>0,
x>0} respectively.

This can be proved by a slight modification of the argument in [1]
th. 1. Following it, let us assume that there exist two generalised
solutions w,(t, x) u.(t, ) satisfying (5). It is sufficient to see that
for any F(t, x) € C* such that there exist T>a>0, X>0 (may depend
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on F') and F'=0 for t>T, 0<t<a or |x|>X, the following is true
(6) SSF(t, ) (ua(t, &) — e, ¥))dt daz=0.

>0

For the proof of (6) we consider the dual linear differential equation

(7) 9V 1 st )0+ yt, ww=Ft, ©),
ot 0x

where ¢(t, )= W, ¥(t, x)= %‘i In order to have

a continuously differentiable solution »(¢, #) we take the following
averaged equation instead of (7).

(8) %”—+¢h<t, )00 b app(t, B =F(t, v),
t oxr

where ¢,, ¥, are averaged functions of ¢, ¥ and +,,=0 for 0<¢t<p,
therefore h—0, p—0 include ¢,—¢, Vi—y.
We take as the boundary condition for v(¢, ) the following:
(9) (T, x)=0 for —oo<w< 400,

v(t, £c0)=0 for 0<t<T,
where it is sufficient for the latter to take v(t, =(X+CT))=0 for
each F(t, x), where C= orgtaﬁ B(1).

Now we have
—C<gu(t, ) < A(x) for >0, 0<t<LT,
—A(—2)< (L, )< C for x<0, 0<t<T,
| ¥rao(t, ) | < const. for (¢, x)e D,
where D={(t, ) 0<t<T,|x| <X} and A(x)e C* in [0, + o).
Taking account of the explicit formula
A0 ot 2= "Fls, a(s, b, 0] ex0 || —aele, alt, w))dz [ds,
to 133
where (¢, t,, x,) is the characteristics passing through the point
(t,, ) i.e., the solution of dx/dt=¢,(t, x) and |x(t, t, ©,)|=>X+CT
or t,=T, and also the fact that F(t,x)=0 for (¢, x)¢ D,{t=a},
quite analogously to [1], we have the following:
'v(tu xl) € Cl(ogtLg T, —co<a,< +°°)’
| v(¢,, @,) | <const. (indep. of &, dep. on D and sup, {|u, |, | %},

lax < const. (indep. of k) for (tuwl)GDn{tZOé}, 0: fixed,
1

I;iE tion l’(tly x1)<const. (indep. of h and t) for p: ﬁxed.
00 a:1<+eo

Thus using the definition (8) of the generalised solution, and
tending h, o to zero appropriately, then we have
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Ay (e —u)F dt duw= SS(ul—uz)(g—Z +¢"§—Z o 0)dE da

- SS(u - uz)l:(qi;. ~ ¢)g—z +(Wao— «zr)v]dt da=0.

§ 2. Existence Theorem. Hereafter we assume that

h(w)< const. (v*+1) for >0,
12) h(u)> —const. (u*+1) for wu<0 and there exist
u,= const. such that A(u,)=0.

For the initial value u,(x) we assume
13) Uo(%) — Uy
is some bounded measurable function with compact support.

Theorem. The generalised solution of Cauchy problem (1) (2),
which satisfies the estimate (5), extists for 0<t< + o0, —co<x< + 00
under the assumptions (12) (13).

The proof is analogous to that of [2]. For the simplicity of the
argument we discuss the case that £,(0)=0, 2(0)=0 and u,(x) is a
Le-funection with compact support.

The solution of the characteristic equation of (1)

du

dx .
(14) ot = fu(u), i h(w)

with the initial values (0, &)=¢, u(0, &)=u,(&), & € (a, b) satisfies the
following

t20

u(t.§)

Su(%) g — _
k) du=ua(t, §)—§, or

u(t, )=u,(§) for R(uy(£)=0.
Because of the continuous differentiability of A(u) and the formula
(15) with f,,>06>0 we have
16) 0<u(t, )<ul§)et for u()=0,
0>u(t, &)=u(&)e~ " for wuy(£)<0.
Differentiation (14) with respect to & gives
ou(t, &) _ ouw(0, &) '
8= ) exp Sohu(u(z', &)dc
ox(t, &) _ 0x(0, &) , ou(0, &) (* v
(0,8 = 000, ) WO DTt ) exp hututr, e
and so under the condition 0x(0, §)/0¢>0, ou(0, £)/05>0 we have
ary Qw_dufow ex | e,
Po OO futule, €)) exp | huuty, )dnde
const. exp| x|

ot
In the case that the initial is (0, &¢)=const,

(15)

<
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(0, &)=u_+e(w,—u_) for 0<e<l, u_<u,
the same is true:
(17.2) ou _ ow ggg const. exp | x| )
ox 0oel oOe ot
Now we approximate the initial condition u,(x) with piecewise
constant functions u*(g, x)(h>0):

(18) 40, x):_hl_S:;H)huo(E)dS for kh<w<(e+L)h,

where (0, )=0 for |2 |>3IN>0,
then we construct the generalised solution for the Cauchy problem
(1)(18) by means of the solution of the characteristics equation (14)
with the initial values
(19) 20, &)=¢, (0, §)=uk0, ),
where

e (kh, (k+1h), k=0, +1, £2, -..,
and if u*(0, kh-0)<u™0, kh+0), then we supplement the initial
values
(20) (0, &)=kh, u(0, &) =u"(0, kh—0)+e(u"(0, kh+0)—u*(0, kh—0)),
for 0<e<1 and necessary k.

The method to construct the generalised solutions u*(¢, ) for the
Cauchy problem (1)(18) is analogous to that of [2], thus using the
formulae (16), (17) for u*(¢, ) we have the following

—C<utt, x)<a(x) for x>0,

—a(—x)<urt, 2)<C for x<0,

uh(ty xl)_uh(ty xz) <K(t’ X,

X, — X,
where K(t, x,, x,) is continuous in t>0, —co <2, 2,<< +oo0. On these
bases by the analogous argument in [2] we see that for VK: compact
subdomain in {t>0, —oco <x < + oo} uM(t, ) is uniformly bounded and
compact in L'(K), i.e.,
s?{plu"(t, z)| < const. (indep. of k),

x,),

Variation {u"(¢, )} < _const.

-Vx<o<x

(indep. of h),

SX | uh(t,, x)—um(t,, x)| de < const. | t,—1t,|
—X

for ¢, t,>Va>0

(indep. of %, dep. on X and «).
By the way u’(t, ) satisfies the following for any continuously

differentiable function ¢(¢, ) with compact support:
(1) SS[“h% —l—f(u")%+h(u")<p]dtdw+ S+°°uh(o, 2)¢(0, z)dz =0,

€xr 00

t2>0
and considering that there exist a subsequence u*/(t, «) of u*(¢, x) such
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that u*(t, x)—u(t, ) € L*(loc) in L'(loc), passing to the limit in (21)
along hj—0, then we have the following for the limit function u(t, x)
Sg[u%‘f_+ f(u)g—z—i-h(u)go]dt do+ S+mgo(0, Tyuo(w)des =0,

t>0

—o0

that is, wu(¢, 2) is the desired generalised solution for (1)(2), and also
the uniqueness of the generalised solution concludes that all sequence
u™(t, x) converge to u(t, x) in L'(loc).

Remark. 1. For the equation w,+(u*/2),=g(x)u?, where g(x)
is any continuously differentiable function, we have an analogous
result to the above, if we take the above definition of the generalised
solution. (ef. [2]).

2. If we take the assumption u,(x)e L> instead of

Ux) — o€ LN S’
(or uy(x)e L= and the set {x|h(u,(x))0} is equivalent almost every-
where to some compact set), we can not generally expect that the
generalised solution of (1)(2) exists in >0 and is locally bounded in
t>0, —oco<a< +oo under the assumption (12).

3, If we take h(u)=u*t*(a>0, const.), then even for the case
ux)e L~ NS’ we can not generally expect that the generalised
solution of (1)(2) exists and is locally bounded in t>0, —co <ax <<+ o0,
but the same existence theorem as the above is true under the
additional condition that if w is infinite, then

Su —[’f(—@-dv is infinite for finite values wu,.
%o ]’L(?})
(by virtue of (15)).

The writer wishes to express his sincere gratitude to Professor
M. Tada and Professor M. Yamaguti for valuable encouraging sug-
gestions and their interest in this note.
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