186. On the Representations of SL(3, C). I

By Masao TSUCHIKAWA

(Comm. by Kinjirô KUNUGI, M.J.A., Nov. 13, 1967)

1. We shall determine the intertwinning operators and the equivalence relation among the representations of the group SL(3, C), generalizing the method described in [1] for SL(2, C). We denote by G the group SL(3, C) and we adopt the notations of the book [2] thoughout this paper, but elements of Z will be denoted by

and so on. Let W be the Weyl group of G consisted of $s_0=e$, $s_1, s_2, s_3=s_2s_1, s_4=s_1s_2$ and $s_5=s_1s_2s_1=s_2s_1s_2$, where

$$s_1 = \begin{bmatrix} 1 & & \\ 1 & & \\ & -1 \end{bmatrix}, \quad s_2 = \begin{bmatrix} -1 & & \\ & 1 \end{bmatrix}.$$

Let G^{0} be the set of all g such that $g_{33} \cdot g^{11} \neq 0$, then g = kz for all $g \in G^{0}$.

2. Let χ be an integral character of $D: \chi(\delta) = (\delta_2 \delta_3)^{(l_1, m_1)} \delta_3^{(l_2, m_2)}$ $(l_k, m_k > 0)$, and \mathcal{E}_{χ} be the finite dimensional vector space of polynomials φ on Z which are at most of degree $(l_1 - 1, m_1 - 1)$ with respect to $z_1, z_1 z_2 - z_3$ and of degree $(l_2 - 1, m_2 - 1)$ with respect to z_2, z_3 . Then, according to the theorem of Cartan and Weyl, for every finite dimensional irreducible representation of G there exists χ such that given representation E^{χ} is realized on \mathcal{E}_{χ} by $E_g^{\chi}\varphi(z) = \chi \beta^{-1/2}(k_g)\varphi(z_g)$.

Now let $\chi = (\lambda, \mu)$ be a complex character of $D: \chi(\delta) = (\delta_2 \delta_3)^{(\lambda_1, \mu_1)} \delta_3^{(\lambda_2, \mu_2)}$ $(\lambda_k, \mu_k$ are complex numbers and $\lambda_k - \mu_k$ are integers), then we can construct a representation $\{T^{\chi}, \mathcal{D}_{\chi}\}$ as follows. Let \mathcal{D}_{χ} be the vector space of C^{∞} -functions φ on Z, satisfying the condition that for every $s \in W$ $\varphi_s(z) = \chi \beta^{-1/2}(k_s)\varphi(z_s)$ is also a C^{∞} -function. The topology of \mathcal{D}_{χ} is defined by the compact uniform convergence of every derivative for every φ_s $(s \in W)$. The operator T_g^{χ} on \mathcal{D}_{χ} is defined by $T_g^{\chi}\varphi(z) = \chi \beta^{-1/2}(k_g)\varphi(z_g)$. This representation is identical with the induced representation $T^{\chi} = Ind\{\chi \mid K \rightarrow G\}$. If all λ_k, μ_k are positive integers, the representation $\{E^{\chi}, \mathcal{C}_{\chi}\}$ is contained in $\{T^{\chi}, \mathcal{D}_{\chi}\}$ as a sub-representation.

3. Let $B(\varphi, \psi)$ be a continuous bilinear form on $\mathcal{D}_{\chi} \times \mathcal{D}_{\chi'}$ such

No. 9]

853

that $B(T_{g}^{\chi}\varphi, T_{g}^{\chi'}\psi) = B(\varphi, \psi)$. We denote by C_{0}^{∞} the totallity of C^{∞} -functions on G with compact support and define the continuous linear mapping of C_{0}^{∞} onto \mathcal{D}_{χ} as follows:

$$\pi^{\mathsf{x}}(f) = \int f(kz) \chi^{-1} \beta^{1/2}(k) dk.$$

Then we can obtain a continuous bilinear form B_1 on $C_0^{\infty} \times C_0^{\infty}$ such that $B_1(f, h) = B(\pi^{\chi}(f), \pi^{\chi'}(h))$. We have

$$B_1(f, h) = \int f(g_1g_2)h(g_2)dT(g_1)dg_2,$$

where dT is a distribution on G which satisfies

(G)
$$dT(k_1^{-1}gk_2) = \chi \beta^{1/2}(k_1)\chi'\beta^{1/2}(k_2)dT(g).$$

To obtain all invariant bilinear forms is equivalent to the problem to obtain dT satisfying the condition (G).

4. It is sufficient to consider dT on each KsK in order to obtain dT, since the condition (G) is given on the K-K double cosets and $G = \sum KsK$ ($s \in W$).

(i) $Ks_5K = G^0s_5$ is a dense open submanifold of G;

(ii a) $Ks_{3}K$ and (ii b) $Ks_{4}K$ are seven-dimensional submanifolds of G and their union is dense open in $G-Ks_{5}K$. They are contained in the boundary of $Ks_{5}K$;

(iii a) Ks_1K and (iii b) Ks_2K are six-dimensional and their union is dense open in the remaining part of G. They are contained in the boundary of the union of the above manifolds;

(iv) $Ks_0K=K$.

From the condition (G), we can get the explicit form of the restriction dT_5 of dT to Ks_5K . Then in order to determine dT completely, it is sufficient to determine the extension dT'_5 to G of dT_5 and to restrict $dT - dT'_5$ on Ks_3K and to proceed analogously. With this method we arrive at the following results.

5. Corresponding to the cases enumerated in 4, we obtain the invariant bilinear forms $B(\varphi, \psi)$ in the following form.

(i) When and only when $\chi^{s_5}\chi'(\delta) = 1$ $(\chi^s(\delta) = \chi(s\delta s^{-1}))$ and neither of pairs (λ_k, μ_k) (k=1,2) is a pair of positive integers, $B(\varphi, \psi)$ exists and has the form

$$\int (z_1 z_2 - z_3)^{(-\lambda_1 - 1, -\mu_1 - 1)} z_3^{(-\lambda_2 - 1, -\mu_2 - 1)} \varphi(z \, z') \psi(z') dz \, dz';$$

(ii a) When and only when $\chi^{s_3}\chi'(\delta) = (\delta_1^2\delta_2)^{(i_1,j_1)}$, $i_1 = \lambda_1$ or $0, j_1 = \mu_1$ or 0, and (λ_2, μ_2) is not a pair of positive integers,

$$\int z_1^{(-\lambda_1-\lambda_2+i_1-1,-\mu_1-\mu_2-j_1-1)} z_2^{(-\lambda_2-i_1-1,-\mu_2-j_1-1)} [(\partial/\partial z_1)^{(i_1,j_1)} \varphi](z_2 z_1 z') \psi(z') dz_1 dz_2 dz';$$

(ii b) When and only when $\chi^{s_4}\chi'(\delta) = (\delta_2^2 \delta_3)^{(i_2, j_2)}$, $i_2 = \lambda_2$ or 0, $j_2 = \mu_2$ or 0, and (λ_1, μ_1) is not a pair of positive integers,

 $\int \! \mathcal{Z}_1^{(-\lambda_1 - i_2 - 1, -\mu_1 - j_2 - 1)} \, \mathcal{Z}_2^{(-\lambda_1 - \lambda_2 + i_2 - 1, -\mu_1 - \mu_2 + j_2 - 1)}$

 $imes [(\partial/\partial z_2 + z_1 \partial/\partial z_3)^{(i_2, j_2)} \varphi](z_1 z_2 z') \psi(z') dz_1 dz_2 dz';$

(iii a) When and only when $\chi^{s_1}\chi'(\delta) = (\delta_2\delta_3^{s_2})^{(i_2,j_2)}(\delta_1\delta_3^{s_2})^{(i_3,j_3)}$, $i_2 = \lambda_2$ or 0, $j_2 = \mu_2$ or 0 and if $i_2 = \lambda_2$, $i_3 = \lambda_1$ or 0, if $i_2 = 0$, $i_3 = \lambda_1 + \lambda_2$ or 0 and if $j_2 = \mu_2$, $j_3 = \mu_1$ or 0, if $j_2 = 0$, $j_3 = \mu_1 + \mu_2$ or 0, and (λ_1, μ_1) is not a pair of positive integers,

$$\int \! z_1^{(-\lambda_2 - i_1 - 1, -\mu_2 - j_1 - 1)} [(\partial / \partial z_2)^{(i_3, j_3)} (\partial / \partial z_2 + z_1 \partial / \partial z_3)^{(i_2, j_2)} \varphi](z_1 z') \psi(z') dz_1 dz';$$

(iii b) When and only when $\chi^{s_2}\chi'(\delta) = (\delta_2\delta_3^2)^{(i_1,j_1)}(\delta_2^2\delta_3)^{(i_3,j_3)}$, $i_1 = \lambda_1$ or 0, $j_1 = \mu_1$ or 0 and if $i_1 = \lambda_1$, $i_3 = \lambda_2$ or 0, if $i_1 = 0$, $i_3 = \lambda_1 + \lambda_2$ or 0 and if $j_1 = \mu_1$, $j_3 = \mu_2$ or 0, if $j_1 = 0$, $j_3 = \mu_1 + \mu_2$ or 0, and (λ_2, μ_2) is not a pair of positive integers,

$$\int \! z_2^{(-\lambda_2 - i_1 - 1, -\mu_2 - j_1 - 1)} [(\partial/\partial z_1)^{(i_1, j_1)} (\partial/\partial z_1 + z_2 \partial/\partial z_3)^{(i_3, j_3)} \varphi](z_2 z') \psi(z') dz_2 dz'.$$
(iv) For $\chi \chi'(\partial) = (\partial_2^2 \partial_3)^{(i_1, j_1)} (\partial_1 \partial_3^2)^{(i_2, j_2)}$, if we set $i = \min(i_1, i_2)$, $j = \min(j_1, j_2)$,

$$\sum_{\leqslant i, 0 \leqslant q \leqslant j} a_{pq} \int [(\partial/\partial z_1)^{(i_1-p, j_1-q)} (\partial/\partial z_2)^{(i_2-p, j_2-q)} (\partial/\partial z_3)^{(p,q)} \varphi](z) \psi(z) dz.$$

As for a_{pq} there are sixty-seven cases in total under the distinct conditions. For instance, if λ_k , μ_k are all positive integers and we take $i_1 = i_2 = \lambda_1 + \lambda_2$, $j_1 = j_2 = \mu_1 + \mu_2$, then $a_{pq} = {}_iC_{pj}C_q \ \lambda_2(\lambda_2 - 1) \cdots (\lambda_2 - p + 1) \ \mu_2(\mu_2 - 1) \cdots (\mu_2 - q + 1)$.

6. An intertwinning operator A of \mathcal{D}_{χ} into $\mathcal{D}_{\chi'}$ is a continuous operator such that $T_{g}^{\chi}A = AT_{g}^{\chi'}$. From each invariant bilinear form we can obtain immediately the intertwinning operator by putting $B(\varphi, \psi) = \int (A\varphi)(z)\psi(z)dz$ for $\varphi \in \mathcal{D}_{\chi}$ and $\psi \in \mathcal{D}_{\chi'-1}$. From the results in 5 we obtain the main theorem.

Theorem. Among the representations $\{T^x, \mathcal{D}_x\}$ there exist following types of intertwinning operators (k=1, 2):

1) identity operator;

2)
$$A_k \varphi(z) = \gamma(\lambda_k, \mu_k) \int z_k^{(-\lambda_k - 1, -\mu_k - 1)} \varphi(z_k z) dz_k$$

where

 $0 \leq p$

$$\gamma(\lambda_k, \mu_k) = \frac{\Gamma((\lambda_k + \mu_k + |\lambda_k - \mu_k| + 2)/2)}{\pi \Gamma((-\lambda_k - \mu_k + |\lambda_k - \mu_k|)/2)} 2^{\lambda_k + \mu_k} \sqrt{-1} e^{-\lambda_k - \mu_k};$$

 A_k maps \mathcal{D}_{χ} into $\mathcal{D}_{\chi^{s_k}}$; in this case (λ_k, μ_k) can be both positive integers;

3) When λ_k is a positive integer (μ_k any integer),

$$A_k\varphi(z) = \int \delta^{(\lambda_k,0)}(z_k)\varphi(z_kz)\,dz_k;$$

 A_k maps \mathcal{D}_{χ} into $\mathcal{D}_{(\lambda^{s_k},\mu)}$;

4) When μ_k is a positive integer (λ_k any integer),

$$A_k\varphi(z) = \int \delta^{(0,\mu_k)}(z_k)\varphi(z_kz)dz_k;$$

A maps \mathcal{D}_{χ} into $\mathcal{D}_{(\lambda,\mu^{s_{k}})}$.

Every non-trivial intertwinning operator is expressed by a product of operators of the above types. For instance, for the operator A obtained from the invariant bilinear form of (1) in 5, we have $A = A_1A_2A_1$ or $A_2A_1A_2$ in the notation in 2).

References

- [1] Gelfand-Graev-Vilenkin: Generalized function. V (in Russian). Moscow (1962).
- [2] Gelfand-Neumark: Unitäre Darstellungen der klassischen Gruppen. Akd. Verlag, Berlin (1959).