186. On the Representations of $\operatorname{SL}(3, \mathrm{C})$. I

By Masao Tsuchikawa

(Comm. by Kinjirô Kunugi, m.J.A., Nov. 13, 1967)

1. We shall determine the intertwinning operators and the equivalence relation among the representations of the group $S L(3, C)$, generalizing the method described in [1] for $S L(2, C)$. We denote by G the group $S L(3, C)$ and we adopt the notations of the book [2] thoughout this paper, but elements of Z will be denoted by

$$
z=\left[\begin{array}{lll}
1 & & \\
z_{1} & 1 & \\
z_{3} & z_{2} & 1
\end{array}\right] \text {, especially } z_{1}=\left[\begin{array}{lll}
1 & & \\
z_{1} & 1 & \\
& &
\end{array}\right]
$$

and so on. Let W be the Weyl group of G consisted of $s_{0}=e$, $s_{1}, s_{2}, s_{3}=s_{2} s_{1}, s_{4}=s_{1} s_{2}$ and $s_{5}=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}$, where

$$
s_{1}=\left[\begin{array}{lll}
& 1 & \\
1 & & \\
& & -1
\end{array}\right], \quad s_{2}=\left[\begin{array}{ccc}
-1 & & \\
& & 1 \\
& 1 &
\end{array}\right] .
$$

Let G^{0} be the set of all g such that $g_{33} \cdot g^{11} \neq 0$, then $g=k z$ for all $g \in G^{0}$.
2. Let χ be an integral character of $D: \chi(\delta)=\left(\delta_{2} \delta_{3}\right)^{\left(l_{1}, m_{1}\right)} \delta_{3}^{\left(l_{2}, m_{2}\right)}$ ($l_{k}, m_{k}>0$), and \mathcal{E}_{χ} be the finite dimensional vector space of polynomials φ on Z which are at most of degree $\left(l_{1}-1, m_{1}-1\right)$ with respect to $z_{1}, z_{1} z_{2}-z_{3}$ and of degree ($l_{2}-1, m_{2}-1$) with respect to z_{2}, z_{3}. Then, according to the theorem of Cartan and Weyl, for every finite dimensional irreducible representation of G there exists χ such that given representation E^{x} is realized on \mathcal{E}_{χ} by $E_{g}^{\chi} \varphi(z)$ $=\chi \beta^{-1 / 2}\left(k_{g}\right) \varphi\left(z_{g}\right)$.

Now let $\chi=(\lambda, \mu)$ be a complex character of $D: \chi(\delta)=\left(\delta_{2} \delta_{3}\right)^{\left(\lambda_{1}, \mu_{1}\right)}$ $\delta_{3}^{\left(\lambda_{2}, \mu_{2}\right)}\left(\lambda_{k}, \mu_{k}\right.$ are complex numbers and $\lambda_{k}-\mu_{k}$ are integers $)$, then we can construct a representation $\left\{T^{x}, \mathscr{D}_{\alpha}\right\}$ as follows. Let \mathscr{D}_{α} be the vector space of C^{∞}-functions φ on Z, satisfying the condition that for every $s \in W \varphi_{s}(z)=\chi \beta^{-1 / 2}\left(k_{s}\right) \varphi\left(z_{s}\right)$ is also a C^{∞}-function. The topology of \mathscr{D}_{χ} is defined by the compact uniform convergence of every derivative for every $\varphi_{s}(s \in W)$. The operator T_{g}^{χ} on \mathscr{D}_{χ} is defined by $T_{g}^{\chi} \varphi(z)=\chi \beta^{-1 / 2}\left(k_{g}\right) \varphi\left(z_{g}\right)$. This representation is identical with the induced representation $T^{x}=\operatorname{Ind}\{\chi \mid K \rightarrow G\}$. If all λ_{k}, μ_{k} are positive integers, the representation $\left\{E^{x}, \mathcal{E}_{\chi}\right\}$ is contained in $\left\{T^{x}, \mathscr{D}_{x}\right\}$ as a sub-representation.
3. Let $B(\varphi, \psi)$ be a continuous bilinear form on $\mathscr{D}_{\chi} \times \mathscr{D}_{\chi^{\prime}}$ such
that $B\left(T_{g}^{\chi} \varphi, T_{g}^{\chi} \psi\right)=B(\varphi, \psi)$. We denote by C_{0}^{∞} the totallity of $C^{\infty}-$ functions on G with compact support and define the continuous linear mapping of C_{0}^{∞} onto \mathscr{D}_{χ} as follows:

$$
\pi^{x}(f)=\int f(k z) \chi^{-1} \beta^{1 / 2}(k) d k
$$

Then we can obtain a continuous bilinear form B_{1} on $C_{0}^{\infty} \times C_{0}^{\infty}$ such that $B_{1}(f, h)=B\left(\pi^{x}(f), \pi^{x^{\prime}}(h)\right)$. We have

$$
B_{1}(f, h)=\int f\left(g_{1} g_{2}\right) h\left(g_{2}\right) d T\left(g_{1}\right) d g_{2}
$$

where $d T$ is a distribution on G which satisfies

$$
\begin{equation*}
d T\left(k_{1}^{-1} g k_{2}\right)=\chi \beta^{1 / 2}\left(k_{1}\right) \chi^{\prime} \beta^{1 / 2}\left(k_{2}\right) d T(g) . \tag{G}
\end{equation*}
$$

To obtain all invariant bilinear forms is equivalent to the problem to obtain $d T$ satisfying the condition (G).
4. It is sufficient to consider $d T$ on each $K s K$ in order to obtain $d T$, since the condition (G) is given on the $K-K$ double cosets and $G=\sum K s K(s \in W)$.
(i) $K s_{5} K=G^{0} s_{5}$ is a dense open submanifold of G;
(ii a) $K s_{3} K$ and (ii b) $K s_{4} K$ are seven-dimensional submanifolds of G and their union is dense open in $G-K s_{5} K$. They are contained in the boundary of $K s_{5} K$;
(iii a) $K s_{1} K$ and (iii b) $K s_{2} K$ are six-dimensional and their union is dense open in the remaining part of G. They are contained in the boundary of the union of the above manifolds;
(iv) $K s_{0} K=K$.

From the condition (G), we can get the explicit form of the restriction $d T_{5}$ of $d T$ to $K s_{5} K$. Then in order to determine $d T$ completely, it is sufficient to determine the extension $d T_{5}^{\prime}$ to G of $d T_{5}$ and to restrict $d T-d T_{5}^{\prime}$ on $K s_{3} K$ and to proceed analogously. With this method we arrive at the following results.
5. Corresponding to the cases enumerated in 4, we obtain the invariant bilinear forms $B(\varphi, \psi)$ in the following form.
(i) When and only when $\chi^{8_{s}} \chi^{\prime}(\delta)=1\left(\chi^{s}(\delta)=\chi\left(s \delta s^{-1}\right)\right)$ and neither of pairs $\left(\lambda_{k}, \mu_{k}\right)(k=1,2)$ is a pair of positive integers, $B(\varphi, \psi)$ exists and has the form

$$
\int\left(z_{1} z_{2}-z_{3}\right)^{\left(-\lambda_{1}-1,-\mu_{1}-1\right)} z_{3}^{\left(-\lambda_{2}-1,-\mu_{2}-1\right)} \varphi\left(z z^{\prime}\right) \psi\left(z^{\prime}\right) d z d z^{\prime} ;
$$

(ii a) When and only when $\chi^{s_{3}} \chi^{\prime}(\delta)=\left(\delta_{1}^{2} \delta_{2}\right)^{\left(i_{1}, j_{1}\right)}, i_{1}=\lambda_{1}$ or $0, j_{1}=\mu_{1}$ or 0 , and (λ_{2}, μ_{2}) is not a pair of positive integers, $\int z_{1}^{\left(-\lambda_{1}-\lambda_{2}+i_{1}-1,-\mu_{1}-\mu_{2}-j_{1}-1\right)} z_{2}^{\left(-\lambda_{2}-i_{1}-1,-\mu_{2}-j_{1}-1\right)}\left[\left(\partial / \partial z_{1}\right)^{\left(i_{1}, j_{1}\right)} \varphi\right]\left(z_{2} z_{1} z^{\prime}\right) \psi\left(z^{\prime}\right) d z_{1} d z_{2} d z^{\prime} ;$
(ii b) When and only when $\chi^{s_{4}} \chi^{\prime}(\delta)=\left(\delta_{2}^{2} \delta_{3}\right)^{\left(i_{2}, j_{2}\right)}, i_{2}=\lambda_{2}$ or $0, j_{2}=\mu_{2}$ or 0 , and $\left(\lambda_{1}, \mu_{1}\right)$ is not a pair of positive integers,

$$
\begin{aligned}
& \int z_{1}^{\left(-\lambda_{1}-i_{2}-1,-\mu_{1}-j_{2}-1\right)} z_{2}^{\left(-\lambda_{1}-\lambda_{2}+i_{2}-1,-\mu_{1}-\mu_{2}+j_{2}-1\right)} \\
& \times\left[\left(\partial / \partial z_{2}+z_{1} \partial / \partial z_{3}\right)^{\left(i_{2}, j_{2}\right)} \varphi\right]\left(z_{1} z_{2} z^{\prime}\right) \psi\left(z^{\prime}\right) d z_{1} d z_{2} d z^{\prime} ;
\end{aligned}
$$

(iii a) When and only when $\chi^{s_{1}} \chi^{\prime}(\delta)=\left(\delta_{2} \delta_{3}^{2}\right)^{\left(i_{2}, j_{2}\right)}\left(\delta_{1} \delta_{3}^{2}\right)^{\left(i_{3}, j_{3}\right)}, i_{2}=\lambda_{2}$ or $0, j_{2}=\mu_{2}$ or 0 and if $i_{2}=\lambda_{2}, i_{3}=\lambda_{1}$ or 0 , if $i_{2}=0, i_{3}=\lambda_{1}+\lambda_{2}$ or 0 and if $j_{2}=\mu_{2}, j_{3}=\mu_{1}$ or 0 , if $j_{2}=0, j_{3}=\mu_{1}+\mu_{2}$ or 0 , and $\left(\lambda_{1}, \mu_{1}\right)$ is not a pair of positive integers,
$\int z_{1}^{\left(-\lambda_{2}-i_{1}-1,-\mu_{2}-j_{1}-1\right)}\left[\left(\partial / \partial z_{2}\right)^{\left(i_{3}, j_{3}\right)}\left(\partial / \partial z_{2}+z_{1} \partial / \partial z_{3}\right)^{\left(i_{2}, j_{2}\right)} \varphi\right]\left(z_{1} z^{\prime}\right) \psi\left(z^{\prime}\right) d z_{1} d z^{\prime} ;$
(iii b) When and only when $\chi^{s_{2}} \chi^{\prime}(\delta)=\left(\delta_{2} \delta_{3}^{2}\right)^{\left(i_{1}, j_{1}\right)}\left(\delta_{2}^{2} \delta_{3}\right)^{\left(i_{3}, j_{3}\right)}, i_{1}=\lambda_{1}$ or $0, j_{1}=\mu_{1}$ or 0 and if $i_{1}=\lambda_{1}, i_{3}=\lambda_{2}$ or 0 , if $i_{1}=0, i_{3}=\lambda_{1}+\lambda_{2}$ or 0 and if $j_{1}=\mu_{1}, j_{3}=\mu_{2}$ or 0 , if $j_{1}=0, j_{3}=\mu_{1}+\mu_{2}$ or 0 , and $\left(\lambda_{2}, \mu_{2}\right)$ is not a pair of positive integers,

$$
\int z_{2}^{\left(-\lambda_{2}-i_{1}-1,-\mu_{2}-j_{1}-1\right)}\left[\left(\partial / \partial z_{1}\right)^{\left(i_{1}, j_{1}\right)}\left(\partial / \partial z_{1}+z_{2} \partial / \partial z_{3}\right)^{\left(i_{3}, j_{3}\right)} \varphi\right]\left(z_{2} z^{\prime}\right) \psi\left(z^{\prime}\right) d z_{2} d z^{\prime} .
$$

(iv) For $\chi \chi^{\prime}(\delta)=\left(\delta_{2}^{2} \delta_{3}\right)^{\left(i_{1}, j_{1}\right)}\left(\delta_{1} \delta_{3}^{2}\right)^{\left(i_{2}, j_{2}\right)}$, if we set $i=\min \left(i_{1}, i_{2}\right)$, $j=\min \left(j_{1}, j_{2}\right)$,

$$
\sum_{0 \leqslant p<i, 0 \leqslant q \leqslant j} a_{p q} \int\left[\left(\partial / \partial z_{1}\right)^{\left(i_{1}-p, j_{1}-q\right)}\left(\partial / \partial z_{2}\right)^{\left(i_{2}-p, j_{2}-q\right)}\left(\partial / \partial z_{3}\right)^{(p, q)} \varphi\right](z) \psi(z) d z .
$$

As for $a_{p q}$ there are sixty-seven cases in total under the distinct conditions. For instance, if λ_{k}, μ_{k} are all positive integers and we take $i_{1}=i_{2}=\lambda_{1}+\lambda_{2}, j_{1}=j_{2}=\mu_{1}+\mu_{2}$, then $a_{p q}={ }_{i} C_{p j} C_{q} \quad \lambda_{2}\left(\lambda_{2}-1\right) \cdots$ $\left(\lambda_{2}-p+1\right) \mu_{2}\left(\mu_{2}-1\right) \cdots\left(\mu_{2}-q+1\right)$.
6. An intertwinning operator A of \mathscr{D}_{χ} into $\mathscr{D}_{x^{\prime}}$ is a continuous operator such that $T_{g}^{\chi} A=A T_{g}^{\chi^{\prime}}$. From each invariant bilinear form we can obtain immediately the intertwinning operator by putting $B(\varphi, \psi)=\int(A \varphi)(z) \psi(z) d z$ for $\varphi \in \mathscr{D}_{\chi}$ and $\psi \in \mathscr{D}_{x^{\prime-1}}$. From the results in 5 we obtain the main theorem.

Theorem. Among the representations $\left\{T^{x}, \mathscr{D}_{\chi}\right\}$ there exist following types of intertwinning operators $(k=1,2)$:

1) identity operator;
2)

$$
A_{k} \varphi(z)=\gamma\left(\lambda_{k}, \mu_{k}\right) \int z_{k}^{\left(-\lambda_{k}-1,-\mu_{k}-1\right)} \varphi\left(z_{k} z\right) d z_{k}
$$

where

$$
\gamma\left(\lambda_{k}, \mu_{k}\right)=\frac{\Gamma\left(\left(\lambda_{k}+\mu_{k}+\left|\lambda_{k}-\mu_{k}\right|+2\right) / 2\right)}{\pi \Gamma\left(\left(-\lambda_{k}-\mu_{k}+\left|\lambda_{k}-\mu_{k}\right|\right) / 2\right)} 2^{\lambda_{k}+\mu_{k}} \sqrt{-1}-\left|\lambda_{k}-\mu_{k}\right| ;
$$

A_{k} maps \mathscr{D}_{χ} into $\mathscr{D}_{\alpha^{s} k}$; in this case $\left(\lambda_{k}, \mu_{k}\right)$ can be both positive integers;
3) When λ_{k} is a positive integer (μ_{k} any integer),

$$
A_{k} \varphi(z)=\int \delta^{\left(\lambda_{k}, 0\right)}\left(z_{k}\right) \varphi\left(z_{k} z\right) d z_{k}
$$

A_{k} maps \mathscr{D}_{χ} into $\mathscr{D}_{\left(\lambda^{s} k_{k, \mu}\right)}$;
4) When μ_{k} is a positive integer (λ_{k} any integer),

$$
A_{k} \varphi(z)=\int \delta^{\left(0, \mu_{k}\right)}\left(z_{k}\right) \varphi\left(z_{k} z\right) d z_{k} ;
$$

A maps \mathscr{D}_{χ} into $\mathscr{D}_{\left(\lambda, \mu^{s} k\right)}$.
Every non-trivial intertwinning operator is expressed by a product of operators of the above types. For instance, for the operator A obtained from the invariant bilinear form of (1) in 5, we have $A=A_{1} A_{2} A_{1}$ or $A_{2} A_{1} A_{2}$ in the notation in 2).

References

[1] Gelfand-Graev-Vilenkin: Generalized function. V (in Russian). Moscow (1962).
[2] Gelfand-Neumark: Unitäre Darstellungen der klassischen Gruppen. Akd. Verlag, Berlin (1959).

