No. 9]

184. Notes on Groupoids and their Automorphism Groups

By Takayuki TAMURA University of California, Davis, California, U.S.A. (Comm. by Kenjiro SHODA, M.J.A., Nov. 13, 1967)

A groupoid is a set with a binary operation which need not be associative. The group of all automorphisms of a groupoid G is called the automorphism group of G and it is denoted by $\mathfrak{A}(G)$. Let $\mathfrak{S}(G)$ denote the symmetric group on the set G. In [2] the author determined the structure of G satisfying $\mathfrak{A}(G) = \mathfrak{S}(G)$. This paper supplements equivalent conditions to the theorem in case |G| > 4, and adds some related results.

In [2] the author gave the following theorem.

Theorem 1. Let G be a groupoid. $\mathfrak{A}(G) = \mathfrak{S}(G)$ if and only if G is either isomorphic or anti-isomorphic onto one on the following types:

(1.1) A right zero semigroup: xy = y for all x, y.

(1.2) The idempotent quasigroup of order 3.

(1.3) The groupoid $\{1, 2\}$ of order 2 defined by

 $x \cdot 1 = 2, x \cdot 2 = 1$ for x = 1, 2.

Before introducing the main theorem in this paper, we mention some remarks on the terminology (see [1]). We do not assume the finiteness of G.

By a finite permutation φ of a set G we mean a permutation φ of G such that the set $\{x \in G; x\varphi \neq x\}$ is finite. A permutation φ of G is called even if and only if φ is a finite permutation which is the product of even number of substitutions (i.e. cycles of length 2). An odd permutation is defined in a similar way. Let \mathfrak{D} be a permutation group on G. Let k be a positive integer with $k \leq |G|$. \mathfrak{D} is called k-ply transitive if and only if for an arbitrary set of k distinct elements a_1, \dots, a_k and for an arbitrary set of k distinct elements a'_1, \dots, a'_k , there is $\varphi \in \mathfrak{D}$ such that $a_i\varphi = a'_i$ for $i=1,\dots,k$. Let $\mathfrak{B}(G)$ denote the group of all automorphisms and all antiautomorphisms of G. $\mathfrak{A}(G)$ is a subgroup of $\mathfrak{B}(G)$ and the index of $\mathfrak{A}(G)$ in $\mathfrak{B}(G)$ is 2. Let $\mathfrak{S}^*(G)$ denote the group of all finite permutations of G.

Theorem 2. Let G be a groupoid with |G|>4. Then the following statements are equivalent.

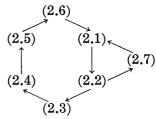
(2.1) A groupoid G is isomorphic onto either a right zero

semigroup or a left zero semigroup.

- (2.2) $\mathfrak{A}(G) = \mathfrak{S}(G)$.
- (2.3) $\mathfrak{B}(G) = \mathfrak{S}(G)$.
- (2.4) $\mathfrak{S}^*(G) \subseteq \mathfrak{B}(G)$.
- (2.5) Every even permutation of G is contained in $\mathfrak{A}(G)$.
- (2.6) $\mathfrak{A}(G)$ is triply transitive.

(2.7) $\mathfrak{A}(G)$ is doubly transitive and there is $\varphi \in \mathfrak{A}(G)$ such that $a\varphi = a, b\varphi = b$ for some $a, b \in G, a \neq b$, but $x\varphi \neq x$ for all $x \neq a, x \neq b$.

Proof. The proof will be done in the following direction.



 $(2.1)\rightarrow(2.2)$ is given by Theorem 1; $(2.2)\rightarrow(2.3)$ and $(2.3)\rightarrow(2.4)$ are obvious.

Proof of $(2.4) \rightarrow (2.5)$: By the assumption

(3) $\mathfrak{S}^*(G) = \overline{\mathfrak{A}(G)} \cup \overline{\mathfrak{A}'(G)}$ where

 $\mathfrak{A}'(G) = \mathfrak{B}(G) \setminus \mathfrak{A}(G), \ \overline{\mathfrak{A}(G)} = \mathfrak{A}(G) \cap \mathfrak{S}^*(G), \ \overline{\mathfrak{A}'(G)} = \mathfrak{A}'(G) \cap \mathfrak{S}^*(G),$

clearly $\overline{\mathfrak{A}(G)} \neq \phi$ but $\overline{\mathfrak{A}'(G)}$ could be empty. Also

 $(4) \quad \mathfrak{S}^*(G) = \mathcal{A}(G) \cup \mathcal{B}(G)$

where $\mathcal{A}(G)$ is the alternating group on G, namely, the group of all even permutations on G, and $\mathcal{B}(G) = \mathfrak{S}^*(G) \setminus \mathcal{A}(G)$. Since both $\overline{\mathfrak{A}(G)}$ and $\mathcal{A}(G)$ are¹⁾ of index at most 2 in $\mathfrak{S}^*(G)$, they are normal subgroups of $\mathfrak{S}^*(G)$, and $\mathfrak{S}^*(G) = \mathcal{A}(G) \cdot \overline{\mathfrak{A}(G)}$. By the isomorphism theorem

$\mathcal{A}(G)/\mathcal{A}(G)\cap \overline{\mathfrak{A}(G)}\cong \mathfrak{S}^*(G)/\overline{\mathfrak{A}(G)}$.

Hence $\mathcal{A}(G)$ contains a normal subgroup $\mathcal{A}(G) \cap \overline{\mathfrak{A}(G)}$. On the other hand it is well known that $\mathcal{A}(G)$ is simple if $|G| \ge 5$ (see p. 71 [1]) and that $|\mathcal{A}(G)| > 2$ if $|G| \ge 5$. Consequently $\mathcal{A}(G) = \mathcal{A}(G) \cap \overline{\mathfrak{A}(G)}$ or $\mathcal{A}(G) \subseteq \overline{\mathfrak{A}(G)}$. Moreover it holds that $\mathfrak{S}^*(G) = \overline{\mathfrak{A}(G)}$, or $\mathfrak{S}^*(G) \subseteq \mathfrak{A}(G)$.

Proof of $(2.5) \rightarrow (2.6)$: Let a_1, a_2, a_3 be arbitrary distinct elements of G and b_1, b_2, b_3 be also arbitrary distinct in G. Let T be a subset of G such that $|T| = m, 5 \le m < \infty$, and $\{a_1, a_2, a_3\} \cup \{b_1, b_2, b_3\} \subseteq T$. Let $\mathfrak{S}(T)$ be the subgroup (of $\mathfrak{S}(G)$) consisting of all permutations which fix each element outside T. $\mathfrak{S}(T)$ is isomorphic with the symmetric group of degree m. Let $\mathcal{A}(T)$ be the alternative group in $\mathfrak{S}(T)$. It is known that $\mathcal{A}(T)$ is (m-2)-ply transitive, hence triply

844

¹⁾ Strictly, $\overline{\mathfrak{A}(G)}$ is of index at most 2, but $\mathfrak{A}(G)$ is of index 2.

transitive. Hence there is $\varphi \in \mathcal{A}(T)$ such that $a_i \varphi = b_i (i=1, 2, 3)$. Since $\mathcal{A}(T) \subseteq \mathfrak{A}(G)$ by the assumption, we can find φ in $\mathfrak{A}(G)$. Thus we have (2.6).

Proof of $(2.6) \rightarrow (2.1)$: To prove the idempotency of G, suppose $a^2 = b$ and $a \neq b$ for some $a, b \in G$. Let a, b, c, be three distinct elements of G. By the assumption there is an automorphism φ of G such that $a\varphi = a, b\varphi = c$. Applying φ to $a^2 = b$, we have $a^2 = c$. This is a contradiction since the binary operation is single-valued. Therefore $a^2 = a$ for all $a \in G$. Suppose ab = c for some $a, b, c, a \neq b$, $a \neq c, b \neq c$. Let $d \neq a, d \neq b, d \neq c$. Consider an automorphism Ψ with $a\Psi = a, b\Psi = b, c\Psi = d$. Then Ψ transfers ab = c to ab = d. This is also a contradiction. Hence we have proved ab = a or b.

If ab=a, an automorphism $\begin{pmatrix} a, b, \cdots \\ x, b, \cdots \end{pmatrix}^{2^{j}}$, $b\neq x$, carries ab=a to $xb=x, b\neq x$; and then $\begin{pmatrix} x, b, \cdots \\ x, y, \cdots \end{pmatrix}$, $x\neq y$, carries xb=x to $xy=x, x\neq y$. Consequently we have xy=x for all $x, y \in G$. Likewise ab=b implies xy=y for all $x, y \in G$.

Proof of (2.7) \rightarrow (2.1): By the double transitivity of $\mathfrak{A}(G)$, we have $a^2 = a$ for all $a \in G$. By the assumption there is an automorphism φ such that

 $a_0 \varphi = a_0, \ b_0 \varphi = b_0 \ \text{ for some } a_0, \ b_0, \ a_0 \neq b_0$

and no other elements of G are fixed. On the other hand $(a_0b_0)\varphi = (a_0\varphi)(b_0\varphi) = a_0b_0$

which implies that a_0b_0 is either a_0 or b_0 . By the same arguments in the proof of (2.6) \rightarrow (2.1), we have xy = x for all $x, y \in G$. Similarly $a_0b_0 = b_0$ implies xy = y for all $x, y \in G$.

 $(2.2) \rightarrow (2.7)$ is obvious.

Thus the proof of the theorem has been completed.

Remark. In case |G|=4, (2.1), (2.2), (2.6), and (2.7) are equivalent, and (2.3), (2.5), and (2.8) below are equivalent:

(2.8) G is a right zero semigroup, or a left zero semigroup or the idempotent quasigroup.³⁾ (see [3].)

In case |G|=3, (2.2), (2.6), (2.7), and (2.8) are equivalent.

Theorem 3. Let S be a set with $|S| \leq 4$. For every subgroup \mathfrak{G} of $\mathfrak{S}(S)$ there is at least one groupoid G defined on S such that $\mathfrak{A}(G) = \mathfrak{G}$.

Theorem 3 is proved in [3] and the number of groupoids for each \mathfrak{H} can by computed.

Combining Theorem 2 with Theorem 3, we have

Theorem 4. For each subgroup \mathfrak{H} of $\mathfrak{S}(S)$ there is at least a

No. 9]

²⁾ For convenience we use this notation although G need not be countable.

³⁾ An idempotent quasigroup of order 4 or of order 3 is unique up to isomorphism.

groupoid G defined on S such that $\mathfrak{A}(G) = \mathfrak{H}$ if and only if $|S| \leq 4$. In fact there is no groupoid G for the alternating group \mathfrak{H} if

 $|G| \ge 5$. If we admit the well ordering theorem, we have

Theorem 5. Let S be an infinite or finite set. There is a groupoid G defined on S such that $\mathfrak{A}(G)$ consists of the identical mapping alone.

Proof. S can be well ordered, and let \leq be the ordering. We define a binary operation on S as follows:

 $x \cdot y = \min\{x, y\}$

Then we can prove there is no automorphism except the identical mapping by using the transfinite induction.

The following problem is raised:

Let S be a fixed set and \mathfrak{F} be a permutation group on S, that is, $\mathfrak{F} \subseteq \mathfrak{S}(S)$. Under what condition on \mathfrak{F} and S does there exist a groupoid G defined on S such that $\mathfrak{A}(G) = \mathfrak{F}$?

At the present time we can not completely solve this problem but, by Theorem 2, it is necessary that \mathfrak{D} is not a triply transitive proper subgroup of $\mathfrak{S}(S)$.

Addendum. Let (2.5') be the statement that $\mathfrak{S}^*(G) \subseteq \mathfrak{A}(G)$. As seen in the proof of $(2.4) \rightarrow (2.5)$, we have also $(2.4) \rightarrow (2.5')$, while $(2.5') \rightarrow (2.4)$ is obvious. Thus (2.5') is also equivalent to each of (2.1) through (2.7).

References

- [1] A. G. Kurosch: The Theory of Groups, Vol. 1 (Translation). Chelsea, New York (1960).
- [2] T. Tamura: Some special groupoids. Math. Jap., 8, 23-31 (1963).
- [3] ——: Some contribution of computation to semigroups and groupoids. The proceeding of the conference on computational problems in abstract algebra (to appear).