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1. Introduction. O. Lehto and K. Virtanen [3] used the
spherical derivative
_ f'®]

o(f(2)) T+ f T (1.1)
as a measure of the growth of f(2) near an isolated singularity,
and they [1, 2] developed the study of this direction. In particular,
as regards the growth of the spherical derivative Lehto proved:

Theorem A. Let f(z) be meromorphic in a meighbourhood of
the essential singularity z=a. Then

lim [z—a/| o(f@) 2 - (1.2)
Equality holds for the product
Z—a—a,
)= _~____"’
F@ I»I z—a+ta,
where the numbers a, satisfy the condition |a,.,|=0o(la,]).

Theorem B. If f(?) satisfies the hypothesis of Theorem A
and further f(z) is regular mear z=a, then

h@ |z—a| o(f(2)=oco. (1.3)

Further J. Clunie and W. K. Hayman obtained some extensions

of Theorem A and B in their paper [4]. For instance, they proved
the following result.

Theorem C. If f(z) is an integral function of proper order
2 (0£2=00), then

Tim ’I'ﬂ(’r, f )
171_1.2 Wg Ao(z'l'l)y (1'4)
where A, s an absolute constant and p(r, f)=sup o(f(?)).

2. Our object in this paper is to obtain some regllﬂ;;s concerning
the growth of spherical derivative o(f(z)) for functions regular and
meromorphic in the unit disc |2|<1l. First we shall prove:

Theorem 1. Suppose that f(z) is regular for |z|<l and that
its order 2 satisfies 2<i1<oco. Then

Tim (1—r)=p(r, f)sz(g—g)"l @.1)
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holds, where p(r, f)= sup o(f(®) and K 1is a positive constant

depending on f(z) only

3. Lemmas. We require two lemmas to prove Theorem 1.

Lemma 1. Let f(z)= Za 2" be regular in |2—2z,|<6 and
satisfy | f(&)|=1 there. Then

|a1|§2|ao|1(;)g|ao|' (3.1)
If further | f(2,)|=1 for some z, with |2,—#%,|=0 then for some 2
on the segment joining z, to 2,
log | a |
= oL, 3.2
Az (3.2)
This result was given by W. K. Hayman ([4], p. 125).

Lemma 2. Suppose that ¢(r) (0<r<1) is continuous, positive
and strictly increasing with a piecewise continuous locally bounded
derivative ¢'(r). [At points of discontinuity we define ¢'(r) as the
limit from the left.] Suppose that for positive a, B

Tiﬁ1 o(r)(L—r)*> 8. (3.3)

Then given o (0<a'<a) there exist r arbitrarily mnear to 1 for
which the following are satisfied;

¢'(r)
SD(T)>1 — (3.4)
o(r)(1—r)=h. (3.5)

This lemma is an analogue of Hayman’s ([4], Lemma 3), so we
omit the proof.

4. Proof of Theorem 1. We apply Lemma 2 with a=21 and
a>a'>2 to ¢(r)=log M(r, f) so that for some r arbitrarily near to
1, (3.4) and (3.5) hold simultaneously. For such an » there exists
a point z,=re¢*® such that

— S'@)| _
| f(20) |=M(r, f), ) =¢'(r). (4.1)

(see e.g., [5], p. 136). Now we consider a non-Euclidean disc with
the center z, and the radius o(r)

D (2, 0(r))={z: 0(z, 2,) <d(r)}c{| 2| <1}, (4.2)
where o(r) is the radius of the largest disc D(z, 6(r)) in which
| f(2)|>1, and o(a, b) is non-Euclidean hyperbolic distance between
a and b. We can map conformally this disc D(z, d(r)) onto a disc
|{|<d(r) in {-plane by a transformation

£=8(2)=(2—2,)/(1 —Z). (4.3)
Then obviously d(r)=th é(r), where th x=(e*—e~)/(¢"+e"). Further
we define F(&) by f()=F(),{=8(). Then F({) is regular in
[¢|<d(r) and [ F()|>1 in |{|<d(r). Hence, by Lemma 1
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d(r)< 2|F(0)] }Og [ £(0) | , (4.4)
| F(0) |
and for some { in || <d(r)
log [ F'(0) |
FQO)= . 4.5
o( (C»—lod(r) log 2 (4.5)
Returning to z-plane, we get from (4.4) and (4.5)
d(r)< 2] f,(zo) | log | f(zzo) ‘ , 4.4y
| f(2o) | (L= 2[*)
‘1——502‘2 > 10g|f(z0)| i P 4.5Y
R o(f(z)= 10d(r) log 2 for some z in D(z,, 6(z)). (4.5)
On the other hand, we have by (4.1) and (4.4)
thor)=dr)=2¢r) 1 (4.6)
¢'(r) 1—r
Hence, from (3.4)
tho@r)=d(r)= 2 (1—r)-L <21, 4.7
o 1—-7" o
Therefore, by (4.5)
> ona’ 1—r 4
oz e (4.8)
Using (3.5), we obtain
- aB 1\
O e ) (4.9)
Now setting |z|=R for z satisfying (4.5)', we get
r—dy(r)<R<r+d,(r)<1 (4.10)

since z € D(z,, o(r)), where
_(A—[&[") tho(r) _ (A—]&" th é(r)
W= ey 4 T ey
Then we note by (4.7) that d,(r)—0 as r—1. Hence by (4.10) we
see that R—1 as r—1. Here we consider two cases: 1) r=R, 2)
r<R.
Case 1). In this case, we get from (4.9)

~ ap 1\
B, Nz @z e (L) (4.11)
since 1/1—r)=1/(1—R).
Case 2). In this case, by (4.10)
1/1—-R)<1/(1—r—dy(r)). (4.12)
On the other hand, we have by (4.7) and the definition of d,(r)
a' —2

_ 1—7*th di(r)
1—r—dy(r)y=1—p— E=r)tho(r) 5 4 _ . 4.
T = ey = Ve (4.13)
From (4.12) and (4.13), we get

1 so=2 1 (4.14)

1-r " a+21—-R°
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Thus by (4.9) and (4.14) we can obtain

a’B a’_2 A—1 1 A—1
“B Nz zgh s (Ge) () - @1
In either case, therefore, we obtain from (4.11) and (4.15)
Tim (1 — Ry (R, f)= 2B (“"2>H. (4.16)
Bl 80 log 2 \a'+2

Here o’ can be taken as near to 1 as we please. This proves our
Theorem 1.

5. Corollaries of Theorem 1. Suppose that for functions
meromorphic in |z|<1

u(ry f)=K1—7r)", (5.1)
where K is a positive constant and 1<p<oco. Then,
T(r, f)=0{@—r)**%} (5.2)

holds. Particularly, if f(2) ts a meromorphic function of order 2
(p<ig 00, p>0), from (5.1) and (5.2)

Tim (1), ) =oo. (5.3)

For this, we can get the following result by the same method
as in Theorem 1.
Corollary 1. If f(z) is a regular function in |z|<1l and
satisfies the condition (5.1), then
T(r, £)=0{Q—=r)""}  (r—1). (5.4)
This is a sharper estimate than (5.2) when p=3.
Proof. Suppose that for some positive constant 5’
T IOg M(7" f) ’
Ly K
Applying Lemma 2 with a=p+1,a>a’>2, and 8=8K to o)
=log M(r, ), (3.4) and (3.5) hold. Hence, by the same method
that (4.11) and (4.15) were obtained, we can get
dBK (a—2\*/ 1 \*
#(T’f)28010g2<a'+2> <1—r> ) (5.5)
Therefore, from our assumption we have
B,§80 log 2 <p+3>”<80 log 3 (p+3>PEBO.

p+1 \p-—1 p+1 \p—1
Hence we get for 8'=5,
log M(r, f) - o ¢ 5.6
wMD<p K. (5.6)
Consequently, by a well-known inequality ([67], p. 220):
T(r, f)Slog Mir, NSEELTR, £) - (r<B) 5.7)

we obtain (5.4). This completes the proof.
Further, we can get easily the next relation from Theorem 1.
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Corollary 2. Suppose that f(2) is a regular function of order
A=oo in |z2|<1. Then, for arbitrarily large number N>0
Tim (1 —»)"g(r, f)=oo. (5.8)
rol
6. Further Results. Next we shall show the following
inequality which holds for regular functions of finite order.
Theorem 2. Let f(z) be a regular function of order 2
(0<i< ) in |z2|<1. Then, for any positive number &,
T A=me(f) _
1 ( —o 6.1
e om0 ¢-b
holds, where C is a positive constant depending on f(z) and &.
Proof. By Cauchy’s integral formula, we write
PO | Gy (6.2)
where "'=(1+7)/2 and r=|z|. Hence we get
F@ =L HFOL g
2r )., 1C—z]
< M, ) 2n(r —r)= 2M(', f) , (6.3)
2re(r’ —r) 1—7»
where M(»', f)=max | f(2)]|. On the other hand, by (5.7)
lz|=r’
log M(»', /)< r,,-H", ", 1), (6.4)
P’ —r
where r"=(1+17")/2 and *'=(1+7)/2. Therefore we get
log M(r, /)= T 1, fy=—B_ 107, £). (8.5)
r’—r l—7r
Since f(z) is of order 2, for any positive number ¢ there exists a
value r(¢) such that for all »>»(e)

T(r, f)<(L—r)—*", (6.6)
Therefore using (6.5) and (6.6), we have
M(r', f)<exp [8- 4 (L—r)"""']  (r>r(e)). (6.7)
From (6.3) and (6.7), we obtain
o(fRN=[f(®) = lfr exp [C(1—r)~*—=], (6.8)

where C=8-.4*+, Consequently we have (6.1).
From our proof of Theorem 2, we get:
Corollary 3. If f(z) is regular and of bounded characteristic
m |2|<1, then
Tim_(1—=mo(f(2) _
Tim ~0(1). 6.9
M expred—mn- 0 ©9)
7. W. K. Hayman recently proved the following ([7]).
Theorem D. Suppose that f(z)=>]a, 2" is mean p-valent in
v=0
|z]<1 ([8], p. 23) and that
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M —0,2C,  (VZV) (7.1)

holds. Then
M(r, f)<A®, C, vo)t,(L—r)7*1%  0<r<1. (7.2)
Here 1, = max | a, |, M(r,f):fr}ax | f(R)| and A(p, C, v, denotes a

particular constant depending on p, C, v, only.
From this Theorem D and our proof of Theorem 2 we obtain
the following corollary.

Corollary 4. Suppose that f (z)ziankz"k 1s mean p-valent
k=0

wm | 2|<1 and that
N1 — N = ¢ (7.3)
holds. Then we get

lim (1 - r)e o(f() =0(L), (7.4)

where 0<p<oco and q 18 an integer such that q=1.

Finally, I must express my deep gratitude to Prof. O. Ishikawa
and Prof. N. Yanagihara for cordial guidance and many advices at
many points.
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