181. On the Analyticity and the Unique Continuation Theorem for Solutions of the Navier-Stokes Equation

By Kyûya Masuda
Department of Mathematics, University of Tokyo
(Comm. by Zyoiti Suetuna, m.J.A., Nov. 13, 1967)

1. Introduction. Consider the Navier-Stokes equation (1) $\quad \boldsymbol{u}_{t}+(\boldsymbol{u} \cdot \mathrm{grad}) \boldsymbol{u}=\Delta \boldsymbol{u}-\nabla p+\boldsymbol{f}, \operatorname{div} \boldsymbol{u}=0, x \in G, 0<t<T$, and the condition of adherence at the boundary (2) $\boldsymbol{u}=0 \quad$ on the boundary of G.

Here G is a connected component of exteriors (or interiors) of a bounded hypersurface of class C^{2}, \boldsymbol{u} and \boldsymbol{f} are 3-dimensional real vector functions of x and t, and p is a scalar function of x and t. We are mainly concerned with the question whether a nonconstant flow of incompressible fluid, subject to the Navier-Stokes equation (1) with $f=0$ and the condition (2) of adherence at the boundary, can ever come to rest in a finite time on some potion of G. Before stating our results, we shall define function spaces, and fix our notations. For any open set Q in $R^{n}, \boldsymbol{W}^{k, p}(Q)(k \geqslant 0,1 \leqslant p<\infty)$ is the set of all complex-valued vector functions in $\boldsymbol{L}^{p}(Q)$ for which distribution derivatives of up to order k lie in $\boldsymbol{L}^{p}(Q)$. $\boldsymbol{W}^{k, p}(Q)$ $(k>0)$ is the set of all distributions \boldsymbol{u} such that $\left|\langle\boldsymbol{u}, \varphi\rangle^{1}\right| \leqslant C\|\varphi\|_{L^{p}}$ for φ in $C_{0}^{\infty}(Q), C$ being a positive constant, where $\|\varphi\|_{L^{p}}$ is the L^{p}-norm of φ. $W_{\text {loc }}^{k, p}(Q)(k=0, \pm 1, \cdots)$ is the set of all distribution \boldsymbol{u} on Q which coincide on some neighborhood of each point of Q with elements of $W^{k, p}(Q)$. The set of all 3-dimensional real vector functions φ such that $\varphi \in C_{0}^{\infty}(G)$, and $\operatorname{div} \varphi=0$, is denoted by $C_{0, s}^{\infty}(G)$. Let $\boldsymbol{L}_{s}^{2}=\boldsymbol{L}_{s}^{2}(G)$ be the closure of $C_{0}^{\infty}{ }_{s}(G)$ in $\boldsymbol{L}^{2}(G)$. Let P be the orthogonal projection from $L^{2}(G)$ onto \boldsymbol{L}_{s}^{2}. By A we denote the Friedrichs extension of the symmetric operator $-P \Delta$ in L_{s}^{2} defined for every \boldsymbol{u} such that $\boldsymbol{u} \in C^{2}(G) \cap C^{1}\left(G^{a}\right), \operatorname{div} \boldsymbol{u}=0$, and $\boldsymbol{u}=0$ on the boundary of G, G^{a} being the closure of G. By X_{r} we denote the set of all \boldsymbol{u} in $D\left(A^{r}\right)$ with the norm $\|\boldsymbol{u}\|_{x_{r}}=\left\|A^{r} \boldsymbol{u}\right\|+\|\boldsymbol{u}\|, D\left(A^{r}\right)$ being the domain of A^{r}, where γ is any number with $3 / 4<\gamma<1$. We let $\boldsymbol{X}=\boldsymbol{X}_{4 / 5}$. Here $\|\cdot\|$ is the norm of the Hilbert space $\boldsymbol{L}^{2}(G)$ with the scalar product (\cdot, \cdot). Let $\boldsymbol{H}_{0, s}^{1}=\boldsymbol{H}_{0, s}^{1}(G)$ be the completion of the set $C_{0 . s}^{1}(G)$ of all solenoidal ($\operatorname{div} \boldsymbol{u}=0$) functions in C_{0}^{1} with the norm $\|\nabla \boldsymbol{u}\|+\|\boldsymbol{u}\|$. Now our results are as follows.

[^0]Theorem 1. Let there exists an analytic extension $\boldsymbol{f}(z)=\boldsymbol{f}(\cdot, z)$ of $\boldsymbol{f}(t)=\boldsymbol{f}(\cdot, t)$ such that $\boldsymbol{f}(z)$ is an \boldsymbol{L}_{8}^{2}-valued holomorphic function of z in some neighbourhood Ω of $(0, T)$. Let \boldsymbol{u} be a solution of (1), (2) such that $\boldsymbol{u}(\cdot, t)$ is an $\boldsymbol{H}_{0, \mathrm{e}}^{1}$-valued continuous function of t in ($0, T$). If $\boldsymbol{f}(x, z)$ is analytic in (x, z) in some nonempty open subset $G_{0} \times \Omega$ of $G \times \Omega$, then there exists an analytic (in x and t) function $\boldsymbol{u}^{*}(x, t)$ on $G_{0} \times(0, T)$ such that for each t in $(0, T) \boldsymbol{u}^{*}(x, t)=\boldsymbol{u}(x, t)$, $x \in G_{0}$, after a correction on a null set of the space R^{3}.

Theorem 2. Let \boldsymbol{u} be a solution of (1), (2) with $\boldsymbol{f}=0$ such that $\boldsymbol{u}(\cdot, t)$ is an $\boldsymbol{H}_{0, s}^{1}$-valued continuous function of t in $(0, T)$. If there exist a nonempty open set G_{1} in G and a t_{1} with $0<t_{1}<T$ such that $u\left(x, t_{1}\right)=0, x \in G_{1}$, then \boldsymbol{u} vanishes identically in $G \times(0, T)$.

Here by a solution u of (1), (2), we mean a locally square summable function $\boldsymbol{u}(x, t)$ on $G \times(0, T)$ with the following properties: (i) $\boldsymbol{u}(x, t)$ is weakly divergent free, i.e. $\int(\boldsymbol{u}, \operatorname{grad} \omega) d t=0$ for all scalar function $\omega \in C_{0}^{\infty}(G \times(0, T))$, (ii) $\int\left\{\left(\boldsymbol{u}, \Phi_{t}\right)+(\boldsymbol{u}, \Delta \Phi)+(\boldsymbol{u}, \boldsymbol{u} \cdot \operatorname{grad} \Phi)\right.$ $+(\boldsymbol{f}, \Phi)\} d t=0$ for all C^{∞} vectors Φ which are solenoidal and have compact support in $G \times(0, T)$.

It is to be noted that the above theorems give partial answers to Serrin's conjectures [1].
2. Lemmas for the proof of the theorems. Lemma 1. (a) $D\left(A^{1 / 2}\right)=H_{0, s}^{1}$, and $\left\|A^{1 / 2} \boldsymbol{u}\right\|=\|\nabla \boldsymbol{u}\|$ for $\boldsymbol{u} \in D\left(A^{1 / 2}\right)$. (b) For any bounded open set E in G, its closure being contained in G, there exists a constant $C=C(E)$ such that ess. sup ${ }_{x \in}|v(x)| \leq C\|v\|_{x}, v \in X$.

For the proof see Fujita-Kato [2].
Lemma 2. There exists an analytic extension $\boldsymbol{u}(z)=\boldsymbol{u}(\cdot, z)$ of $\boldsymbol{u}(t)=\boldsymbol{u}(\cdot, t)(t \in(0, T))$ such that $\boldsymbol{u}(z)$ is an \boldsymbol{X}-valued holomorphic function of z in some neighbourhood U, contained in Ω, of $(0, T)$ in the complex plane, satisfying the equation $\partial(\boldsymbol{u}, \varphi) / \partial z=-(\boldsymbol{u}, A \varphi)$ $-((\boldsymbol{u} \cdot \operatorname{grad}) \boldsymbol{u}, \varphi)+(\boldsymbol{f}, \boldsymbol{\varphi})$ for φ in $C_{0, s}^{\infty}(G)$ and z in U.

An outline of the proof of Lemma 2 will be given in section 4.
3. Proof of Theorem 1. We set $\boldsymbol{v}(x, z)=\operatorname{rot}_{x} \boldsymbol{u}(x, z)(\equiv \operatorname{rot} \boldsymbol{u}(x, z))$, $\boldsymbol{u}(x, \xi, \eta)=\boldsymbol{u}(x, \xi+i \eta), \boldsymbol{v}(x, \xi, \eta)=\boldsymbol{v}(x, \xi+i \eta)$, and $\boldsymbol{f}(x, \xi, \eta)=\boldsymbol{f}(x, \xi+i \eta)$, $x \in G, \xi+i \eta \in U$. Then for any φ in $C_{0}^{\infty}(G)(\boldsymbol{u}(\cdot, \xi, \eta), \varphi)$, and $(\boldsymbol{v}(\cdot, \xi, \eta), \varphi)$ are harmonic functions of ξ and η, since $\boldsymbol{u}(\cdot, z)$, and $\boldsymbol{v}(\cdot, z)$ are $\boldsymbol{L}_{s^{-}}^{2}$ valued holomorphic functions of z. Hence we have

$$
\begin{align*}
& \left(\left(\boldsymbol{u},\left[\partial^{2} / \partial \xi^{2}+\partial^{2} / \partial \eta^{2}\right] \varphi \psi \psi\right)\right)=0, \tag{3}\\
& \left(\left(\boldsymbol{v},\left[\partial^{2} / \partial \xi^{2}+\partial^{2} / \partial \eta^{2}\right] \varphi \psi \psi\right)\right)=0 \tag{4}
\end{align*}
$$

for any vector φ in $C_{0}^{\infty}\left(G_{0}\right)$ and any scalar ψ in $C_{0}^{\infty}\left(U_{0}\right)$, where $U_{0}=\{(\xi, \eta) ; \xi+i \eta \in U\}$ and $((\cdot, \cdot))$ is the scalar product in $L^{2}\left(G_{0} \times U_{0}\right)$. Using the relation rot rot $=\operatorname{grad} \operatorname{div}-\Delta$, we have $(u,-\Delta \varphi)=(\boldsymbol{v}, \operatorname{rot} \varphi)$, $\varphi \in C_{0}^{\infty}\left(G_{0}\right)$, since $(\boldsymbol{u}, \operatorname{grad} \operatorname{div} \varphi)=0$ in virtue of the fact that $\boldsymbol{u} \in \boldsymbol{L}_{s}^{2}$.

Consequently,
(5)

$$
((\boldsymbol{u}, \Delta \varphi \psi))=-((\boldsymbol{v}, \operatorname{rot} \varphi \psi))
$$

for φ in $C_{0}^{\infty}\left(G_{0}\right)$ and ψ in $C_{0}^{\infty}\left(U_{0}\right)$. On the other hand, noting that $\operatorname{rot} \varphi \in L_{s}^{2}$ for $\varphi \in C_{0}^{\infty}\left(G_{0}\right)$, we have, by Lemma 2 , $\partial(u, \operatorname{rot} \varphi) / \partial \xi$ $=(\boldsymbol{u}, \Delta \operatorname{rot} \varphi)-((\boldsymbol{u} \cdot \operatorname{grad}) \boldsymbol{u}, \operatorname{rot} \varphi)+(f, \operatorname{rot} \varphi),(\xi, \eta) \in U_{0}$, so that
(6) $((\boldsymbol{v},[\partial / \partial \xi+\Delta] \varphi \psi))-(((\boldsymbol{u} \cdot \operatorname{grad}) \boldsymbol{u}, \operatorname{rot} \varphi \psi))+((\operatorname{rot} \boldsymbol{f}, \varphi \psi))=0$
for any φ in $C_{0}^{\infty}\left(G_{0}\right)$ and any ψ in $C_{0}^{\infty}\left(U_{0}\right)$. By adding (3) to (5), and (4) to (6), we have

$$
\left(\left(\boldsymbol{u},\left[\partial^{2} / \partial \xi^{2}+\partial^{2} / \partial \eta^{2}+\Delta\right] \boldsymbol{\varphi} \psi\right)\right)+((\boldsymbol{v}, \operatorname{rot} \varphi \psi))=0
$$

and

$$
\begin{aligned}
\left(\left(\boldsymbol{v},\left[\partial^{2} / \partial \xi^{2}+\partial^{2} / \partial \eta^{2}+\Delta+\partial / \partial \xi\right] \varphi \psi\right)\right) & -(((\boldsymbol{u} \cdot \operatorname{grad}) \boldsymbol{u}, \operatorname{rot} \varphi \psi)) \\
& +((\operatorname{rot} \boldsymbol{f}, \varphi \psi))=0,
\end{aligned}
$$

for $\varphi \in C_{0}^{\infty}\left(G_{0}\right)$, and $\psi \in C_{0}^{\infty}\left(U_{0}\right)$. Since the totality of finite sums $\sum \varphi_{j} \psi_{j}$ with $\varphi_{j} \in C_{0}^{\infty}\left(G_{0}\right)$ and $\psi_{j} \in C_{0}^{\infty}\left(U_{0}\right)$ is dense in $C_{0}^{\infty}\left(G_{0} \times U_{0}\right)$ in the topology of $D\left(G_{0} \times U_{0}\right)$ (see L. Schwartz [3] p. 107), we obtain

$$
\begin{gather*}
\left(\left(\boldsymbol{u},\left[\partial^{2} / \partial \eta^{2}+\partial^{2} / \partial \xi^{2}+\Delta\right] \Phi\right)\right)+((\boldsymbol{v}, \operatorname{rot} \Phi))=0, \tag{7}\\
\left(\left(\boldsymbol{v},\left[\partial^{2} / \partial \xi^{2}+\partial^{2} / \partial \eta^{2}+\Delta+\partial / \partial \xi\right] \Phi\right)\right)-(([\boldsymbol{u} \cdot \operatorname{grad}] \boldsymbol{u}, \operatorname{rot} \Phi)) \\
+((\operatorname{rot} \boldsymbol{f}, \Phi))=0
\end{gather*}
$$

for any Φ in $C_{0}^{\infty}\left(G_{0} \times U_{0}\right)$. Let $K=E \times F$ be any bounded open set, its closure being contained in $G_{0} \times U_{0}$. Then we shall show that

$$
\begin{equation*}
\boldsymbol{u} \in \boldsymbol{W}^{2,10 / 3}(K), \boldsymbol{v} \in \boldsymbol{W}^{1,10 / 3}(K) \tag{9}
\end{equation*}
$$

Since $\boldsymbol{u}(\cdot, z)$ is an X-valued, and so $H_{0, s}^{1}$-valued, holomorphic function of z, we see that $\boldsymbol{v}(\cdot, z)$ is an $L^{2}(E)$-valued holomorphic function of \boldsymbol{z} in view of $\operatorname{rot} \boldsymbol{u}=\boldsymbol{v}$, and that $\boldsymbol{u}(\cdot, z)$ is an $\boldsymbol{L}^{\infty}(E)$-valued continuous function of z in view of the fact that ess. $\sup _{x \in E}|\boldsymbol{u}(x, z)| \leqslant C\|\boldsymbol{u}(\cdot, z)\|_{X}$ for some constant C, independent of z, by Lemma 1 . Hence $\boldsymbol{v} \in \boldsymbol{L}^{2}(K)$ and $\boldsymbol{u} \in \boldsymbol{L}^{\infty}(K)$. Since

$$
\|(\boldsymbol{u} \cdot \operatorname{grad}) \boldsymbol{u}\|_{L^{2}(K)} \leqslant\left(\text { ess. } \sup _{K}|\boldsymbol{u}|\right)\|\nabla \boldsymbol{u}\| \leqslant(\text { ess. } \sup |\boldsymbol{u}|)\|\boldsymbol{u}\|_{X}
$$

by Lemma 1 , we have (u•grad) $\boldsymbol{u} \in \boldsymbol{L}^{2}(K)$, from which it follows that $\operatorname{rot} \boldsymbol{f}-\operatorname{rot}(\boldsymbol{u} \cdot \mathrm{grad}) \boldsymbol{u} \in \boldsymbol{W}^{-1,2}(K)$. We have, by (8), ($\partial^{2} / \partial \xi^{2}+\partial^{2} / \partial \eta^{2}+\Delta-$ $\partial / \partial \xi) \boldsymbol{v} \in \boldsymbol{W}_{\text {loc }}^{-1,2}(K)$. Hence, applying the interior regularity theorem (I. R. THM.) of weak solutions of elliptic equations, we have $\boldsymbol{v} \in \boldsymbol{W}_{\text {loc }}^{1,2}(K)$, so that $\left(\partial^{2} / \partial \xi^{2}+\partial^{2} / \partial \eta^{2}+\Delta-\partial / \partial \xi\right) \boldsymbol{u}=\operatorname{rot} \boldsymbol{v} \in \boldsymbol{L}_{\mathrm{ioc}}^{2}(K)$ by (8). Hence $\boldsymbol{u} \in \boldsymbol{W}_{\mathrm{loc}}^{2,2}(K)$. By Sobolev's lemma, $\boldsymbol{v} \in \boldsymbol{W}_{\text {loc }}^{1.2}(K)$ implies $\boldsymbol{v} \in \boldsymbol{L}_{10 \mathrm{c}}^{10 / 3}(K)$. Also we have $\boldsymbol{u} \in \boldsymbol{W}_{\text {loc }}^{1,10 / 3}(K)$. By the arbitrariness of the choice of $K, \boldsymbol{v} \in \boldsymbol{L}^{10 / 3}(K)$ and $\boldsymbol{u} \in \boldsymbol{W}^{1,10 / 3}(K)$. Since

$$
\|(\boldsymbol{u} \cdot \operatorname{grad}) \boldsymbol{u}\|_{L^{10 / 3}(K)} \leqslant\left(\text { ess. } \sup _{K}|\boldsymbol{u}|\right) \times\|\boldsymbol{u}\|_{W^{1,10 / 3}(K)}
$$

we have $(\boldsymbol{u} \cdot \mathrm{grad}) \boldsymbol{u} \in \boldsymbol{L}^{10 / 3}(K)$, and so $\operatorname{rot} \boldsymbol{f}-\operatorname{rot}(\boldsymbol{u} \cdot \operatorname{grad}) \boldsymbol{u} \in \boldsymbol{W}_{\mathrm{ioc}}^{-1,10 / 3}(K)$. Hence applying the I. R. THM. to Eq. (7), and to Eq. (8) once more, we have $\boldsymbol{v} \in \boldsymbol{W}_{\text {loc }}^{1,1 / 3 / 3}(K)$ and $\boldsymbol{u} \in \boldsymbol{W}_{\text {loc }}^{2,10 / 3}(K)$. By the arbitrariness of the choice of K, we have (9). Next we shall show that if $\boldsymbol{u} \in \boldsymbol{W}^{k+1,10 / 3}(K)$ and $\boldsymbol{v} \in \boldsymbol{W}^{k, 10 / 3}(K)$, then $\boldsymbol{u} \in \boldsymbol{W}^{k+2,10 / 3}(K)$ and $\boldsymbol{v} \in \boldsymbol{W}^{k+1,10 / 3}(K)$, k being
a positive integer. Let $D^{\alpha}=\left(\partial / \partial x_{1}\right)^{\alpha_{1}}\left(\partial / \partial x_{2}\right)^{\alpha_{2}}\left(\partial / \partial x_{3}\right)^{\alpha_{3}}, \quad \alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$. Then we have $D^{\alpha}[(\boldsymbol{u} \cdot \operatorname{grad}) \boldsymbol{u}]=\left(D^{\alpha} \boldsymbol{u} \cdot \mathrm{grad}\right) \boldsymbol{u}+\sum_{\beta<\alpha} C_{\beta}\left(D^{\beta} \boldsymbol{u} \cdot \mathrm{grad}\right) D^{\beta-\alpha} \boldsymbol{u}$ for $|\alpha|=\alpha_{1}+\alpha_{2}+\alpha_{3} \leqslant k, C_{\beta}$ being a constant independent of \boldsymbol{u}. Since

$$
\begin{aligned}
\left\|\left(D^{\alpha} \boldsymbol{u} \cdot \mathrm{grad}\right) \boldsymbol{u}\right\|_{L^{10 / 3}(K)} & \leqslant\left\|D^{\alpha} \boldsymbol{u}\right\|_{L^{20 / 3}(K)} \cdot\|\boldsymbol{u}\|_{W^{1,20 / 3_{(K)}}} \\
& \leqslant C\|\boldsymbol{u}\|_{W^{k+1,10 / 3^{2}(K)}}\|\boldsymbol{u}\|_{W^{k+1,10 / 3(K)}}
\end{aligned}
$$

by the Hölder inequality and Sobolev's lemma, we have ($\left.D^{\alpha} u \cdot g r a d\right) u$ $\in L^{10 / 3}(K)$. On the other hand, since

$$
\left\|\left(D^{\beta} \boldsymbol{u} \cdot \mathrm{grad}\right) D^{\alpha-\beta} \boldsymbol{u}\right\|_{L^{10 / 3}(K)} \leqslant C\left(\text { ess. } \sup _{K}\left|D^{\beta} \boldsymbol{u}\right|\right)\|\boldsymbol{u}\|_{W^{k+1,10 / 3}(K)}
$$

for $\beta<\alpha, C$ being a constant independent of \boldsymbol{u}, we have ($\left.D^{\beta} \boldsymbol{u} \cdot \mathrm{grad}\right) D^{\alpha-\beta} \boldsymbol{u} \in \boldsymbol{L}^{10 / 3}(K)$. Here we used the fact that $\boldsymbol{u} \in \boldsymbol{W}^{k+1,10 / 3}(K)$ implies $D^{\beta} \boldsymbol{u} \in \boldsymbol{L}^{\infty}(K), \beta<\alpha$, by Sobolev's lemma. Hence (u•grad)u $\in \boldsymbol{W}^{k, 10 / 3}(K)$, so that $\operatorname{rot} \boldsymbol{f}-\operatorname{rot}((\boldsymbol{u} \cdot \operatorname{grad}) \boldsymbol{u}) \in \boldsymbol{W}^{k-1,10 / 3}(K)$. Hence applying the I. R. THM. to Eq. (7), and to Eq. (8), we have $\boldsymbol{v} \in \boldsymbol{W}^{k+1,10 / 3}(K)$ and $\boldsymbol{u} \in \boldsymbol{W}^{k+2,10 / 3}(K)$. Hence $\boldsymbol{u} \in \boldsymbol{W}^{k+1,10 / 3}(K)$ and $\boldsymbol{v} \in \boldsymbol{W}^{k, 10 / 3}(K)$ for arbitrary positive integer k, by (9). By Sobolev's lemma there exist $\boldsymbol{u}^{*} \in \boldsymbol{C}^{\infty}(K), \boldsymbol{v}^{*} \in \boldsymbol{C}^{\infty}(K)$ such that $\boldsymbol{u}^{*}=\boldsymbol{u}$, and $\boldsymbol{v}^{*}=\boldsymbol{v}$ after a correction on a null set of the space $R^{\text {b }}$. Since $\operatorname{rot}((\boldsymbol{u} \cdot \mathrm{grad}) \boldsymbol{u})=(\boldsymbol{u} \cdot \mathrm{grad}) \operatorname{rot} \boldsymbol{u}-\left(\sum_{\alpha=1}^{3}(\operatorname{rot} \boldsymbol{u})_{\alpha} \cdot \partial \boldsymbol{u}_{\beta} / \partial x_{\alpha}\right)$, we see, by (7) and (8), that a vector ($\boldsymbol{u}^{*}, \boldsymbol{v}^{*}$) satisfies a non-linear analytic elliptic system $\quad\left[\partial^{2} / \partial \xi^{2}+\partial^{2} / \partial \eta^{2}+\Delta\right] \boldsymbol{u}^{*}+\operatorname{rot} \boldsymbol{v}^{*}=0, \quad\left[\partial^{2} / \partial \xi^{2}+\partial^{2} / \partial \eta^{2}+\Delta+\partial / \partial \xi\right] \boldsymbol{v}^{*}$ $-\left(\boldsymbol{u}^{*} \cdot \operatorname{grad}\right) \boldsymbol{v}^{*}-\left(\sum_{\alpha=1}^{3} \boldsymbol{v}_{\alpha}^{*} \cdot \partial \boldsymbol{u}_{\beta}^{*} / \partial x_{\alpha}\right)-\operatorname{rot} \boldsymbol{f}=0$ in $G_{0} \times U_{0}$. Applying the theorem on the analyticity of solutions of a non-linear analytic elliptic system (see Morrey [5]), we see that ($\boldsymbol{u}^{*}, \boldsymbol{v}^{*}$) is analytic in x, ξ, η in the interior of $G_{0} \times U_{0}$. Since $(\boldsymbol{u}(\cdot, z), \varphi)$ and $(\boldsymbol{v}(\cdot, z), \varphi)$ are analytic in z for φ in $C_{0}^{\infty}\left(G_{0}\right)$, we have $(\boldsymbol{u}(\cdot, \xi, 0), \varphi)=\left(\boldsymbol{u}^{*}(\cdot, \xi, 0), \varphi\right)$ and $(\boldsymbol{v}(\cdot, \xi, 0), \varphi)=\left(\boldsymbol{v}^{*}(\cdot, \xi, 0), \varphi\right)$. Hence for each t in $(0, T) \boldsymbol{u}(x, t)$ $=\boldsymbol{u}^{*}(x, t, 0)$ and $\boldsymbol{v}(x, t)=\boldsymbol{v}^{*}(x, t, 0), x \in G_{0}$, after a correction on a null set of the space R^{3}. This shows that $\boldsymbol{u}(x, t)$ and $\boldsymbol{v}(x, t)$ are analytic in x and $t, x \in G_{0}, t \in(0, T)$. Theorem 1 is thus proved.

Proof of Theorem 2. Since $\boldsymbol{u}(x, t)$ is analytic in x and t $(x \in G, t \in(0, T))$ by Theorem 1 , the assumption $\boldsymbol{u}\left(x, t_{1}\right)=0, x \in G_{1}$, implies that $\boldsymbol{u}\left(x, t_{1}\right)=0, x \in G$, so that $\boldsymbol{v}\left(x, t_{1}\right)=0, x \in G$. Since \boldsymbol{v} satisfies the equation $\partial \boldsymbol{v} / \partial t=\Delta \boldsymbol{v}-\operatorname{rot}((\boldsymbol{u} \cdot \operatorname{grad}) \boldsymbol{u})$, we have $\boldsymbol{v}_{t}\left(x, t_{1}\right)=0$, and so $\operatorname{rot} \boldsymbol{u}_{t}\left(x, t_{1}\right)=0, x \in G$. Since $\boldsymbol{u}_{t}(x, t) \in H_{0, s}^{1}(G)$ and $\operatorname{div} \boldsymbol{u}_{t}(x, t)=0$ by the $\boldsymbol{H}_{0, s}^{1}(G)$-valued analyticity of $\boldsymbol{u}(\cdot, t)$ (see Lemma 2), we have $\boldsymbol{u}_{t}\left(x, t_{1}\right)=0, x \in G$. Hence $\boldsymbol{v}_{t t}\left(x, t_{1}\right)=\Delta \boldsymbol{v}_{t}\left(x, t_{1}\right)-\operatorname{rot}\left(\left(\boldsymbol{u}_{t} \cdot \mathrm{grad}\right) \boldsymbol{u}\right) \cdot\left(x, t_{1}\right)$ $-\operatorname{rot}\left((\boldsymbol{u} \cdot \mathrm{grad}) \boldsymbol{u}_{t}\right) \cdot\left(x, t_{1}\right)=0, x \in G$. Taking into account that $\boldsymbol{u}_{t t}\left(x, t_{1}\right)$ $\in \boldsymbol{H}_{0, s}^{1}(G)$ and $\operatorname{div} \boldsymbol{u}_{t t}\left(x, t_{1}\right)=0$, we have $\boldsymbol{u}_{t t}\left(x, t_{1}\right)=0, x \in G$. Applying the same argument, we have $(\partial / \partial t)^{k} u\left(x, t_{1}\right)=0, x \in G, k=1,2, \cdots$. For any φ in $C_{0}^{\infty}(G)(\boldsymbol{u}(\cdot, t), \varphi)$ has a zero of infinite order at t_{1}. By the analyticity in t of $(\boldsymbol{u}(\cdot, t), \varphi),(\boldsymbol{u}(\cdot, t), \varphi)=0$ for any φ in $C_{0}^{\infty}(G)$ and any t in $(0, T)$, showing that $\boldsymbol{u}(x, t)$ vanishes identically on
$G \times(0, T)$. Theorem 2 is thus proved.
4. Proof of Lemma 2. ${ }^{2)}$ In this section we shall outline the proof of Lemma 2. At first we note that $\boldsymbol{u}(t)$ is an \boldsymbol{X}-valued continuous function of t in $(0, T)$, satisfying the equation

$$
\boldsymbol{u}(t)=\exp (-t A) \boldsymbol{u}\left(T_{0}\right)+\int_{T_{0}}^{t} \exp (-(t-s))\{f(s)+F[\boldsymbol{u}(s)]\} d s,
$$

$T_{0} \leqslant t \leqslant T$, where T_{0} is any number in $(0, T)$, and $F[\boldsymbol{v}]=P((\boldsymbol{v} \cdot \mathrm{grad}) \boldsymbol{v})$; see Fujita-Kato [2]. Let ε be an arbitrary number with $0<\varepsilon<T / 2$, and θ be a number such that the set $\{z ; \varepsilon \leqslant \operatorname{Re} z \leqslant T-\varepsilon,|z-\varepsilon| \cos \theta$ $\leqslant \operatorname{Re} z-\varepsilon\}$ is contained in Ω. We set $S\left(\varepsilon, \delta ; T_{0}\right)=\left\{z ; T_{0} \leqslant \operatorname{Re} z \leqslant T_{0}+\delta\right.$, $\left.\left|z-T_{0}\right| \cos \theta \leqslant \operatorname{Re} z-T_{0}\right\}$. Let $\left\{\boldsymbol{u}_{N, k}\left(z ; T_{0}\right) ; N=1,2, \cdots, k=1,2, \cdots\right\}$ be a sequence of \boldsymbol{X}-valued functions defined through $\boldsymbol{u}_{N, 0}\left(z ; T_{0}\right)=0$ and $\boldsymbol{u}_{N, k}\left(z ; T_{0}\right)=\exp \left(-\left(z-T_{0}\right) A_{N}\right) \boldsymbol{u}\left(T_{0}\right)$

$$
+\int_{T} \exp \left(-(z-\zeta) A_{N}\right)\left\{\boldsymbol{f}(\zeta)+F\left[\boldsymbol{u}_{N, k-1}(\zeta)\right]\right\} d \zeta, \quad k \geqslant 1, z \in S\left(\varepsilon, \delta ; T_{0}\right),
$$ the path γ of integration being the segment $\left[T_{0}, z\right]$, where $A_{N}=\int_{0}^{N} \lambda d E(\lambda), E(\lambda)$ being the spectral family associated with A. Then there exists a $\delta=\delta(\varepsilon)>0$, independent of N, such that for any T_{0} with $\varepsilon \leqslant T_{0} \leqslant T \boldsymbol{u}_{N, k}\left(z ; T_{0}\right)$ are \boldsymbol{X}-valued holomorphic functions of z, converging uniformly on $S\left(\varepsilon, \delta ; T_{0}\right)$ to a limit $\boldsymbol{u}_{M}\left(z ; T_{0}\right)$ as $k \rightarrow \infty$ in the norm of \boldsymbol{X}. Hence $\boldsymbol{u}_{\mathbb{N}}\left(z ; T_{0}\right)$ are \boldsymbol{X}-valued holomorphic (continuous) functions of z in the interior of $S\left(\varepsilon, \delta ; T_{0}\right)$ (on $S\left(\varepsilon, \delta ; T_{0}\right)$), satisfying the equation

$$
\boldsymbol{u}_{N}\left(z ; T_{0}\right)=\exp \left(-z A_{N}\right) \boldsymbol{u}\left(T_{0}\right)+\int_{r} \exp \left(-(z-\zeta) A_{N}\right)\left\{\boldsymbol{f}(\zeta)+F\left[\boldsymbol{u}_{N}\left(\zeta ; T_{0}\right)\right]\right\} d \zeta .
$$

It is easy to see that $\boldsymbol{u}_{N}\left(z ; T_{0}\right)$ converges uniformly on $S\left(\varepsilon, \delta ; T_{0}\right)$ to a limit $\boldsymbol{u}_{\infty}\left(z ; T_{0}\right)$ as $N \rightarrow \infty$ in the norm of \boldsymbol{X}. This limit $\boldsymbol{u}_{\infty}\left(z ; T_{0}\right)$ satisfies the equation

$$
\boldsymbol{u}_{\infty}\left(z ; T_{0}\right)=\exp (-z A) \boldsymbol{u}\left(T_{0}\right)+\int_{r} \exp (-(z-\zeta) A)\left\{\boldsymbol{f}(\zeta)+F\left[\boldsymbol{u}_{\infty}\left(\zeta ; T_{0}\right)\right]\right\} d \zeta .
$$

In particular $\boldsymbol{u}_{\infty}\left(t ; T_{0}\right)$ satisfies the equation

$$
\begin{equation*}
\boldsymbol{u}_{\infty}\left(t ; T_{0}\right)=\exp (-t A) \boldsymbol{u}\left(T_{0}\right)+\int_{T_{0}}^{t} \exp (-(t-s) A)\left\{\boldsymbol{f}(s)+F\left[\boldsymbol{u}_{\infty}(s)\right]\right\} d s \tag{10}
\end{equation*}
$$

for t in $\left[T_{0}, T_{0}+\delta\right)$. It is known that Eq. (10) has a unique solution within the class $C\left(\left[T_{0}, T_{0}+\delta\right) ; \boldsymbol{X}\right)$, and that $\boldsymbol{u}(t)$ is an \boldsymbol{X}-valued continuous function of t in $\left[T_{0}, T_{0}+\delta\right)$, satisfying Eq. (10). Hence $\boldsymbol{u}_{\infty}\left(t ; T_{0}\right)=\boldsymbol{u}(t)$ for t in $\left[T_{0}, T_{0}+\delta\right)$, so that $\boldsymbol{u}_{\infty}\left(z ; T_{0}\right)=\boldsymbol{u}_{\infty}\left(z ; T_{1}\right)$ for $z \in S\left(\varepsilon, \delta ; T_{0}\right) \cap S\left(\varepsilon^{\prime}, \delta^{\prime} ; T_{1}\right)$. We define $U=\cup S\left(\varepsilon, \delta ; T_{0}\right) \quad(0<\varepsilon<T / 2$, $\left.0<T_{0}<T\right)$ and $\hat{\boldsymbol{u}}(z)=\boldsymbol{u}_{\infty}\left(z ; T_{0}\right)$ for z in $S\left(\varepsilon, \delta ; T_{0}\right)$. Then $\hat{\boldsymbol{u}}(z)$ is an X-valued holomorphic function, defined in U, with desired properties.

Acknowledgements. The author wishes to express his hearty thanks to Prof. H. Fujita who showed an interest in this work

[^1]and stimulated him, and also to Prof. S. Itô for kind advices on the proof of Lemma 2.

References

[1] Serrin, J.: The initial value problem for the Navier-Stokes equations. Nonlinear Problems, ed. Langer. The University of Wisconsin Press (1963).
[2] Fujita, H., and Kato, T.: On the Navier-Stokes initial value problem. I. Arch. Rat. Mech. Anal., 16, 269-315 (1964).
[3] Schwartz, L.: Theorie des Distributions. I. Hermann, Paris (1950).
[4] Browder, F.: Functional analysis and partial differential equations. II. Math. Ann., 145, 81-226 (1962).
[5] Morrey, C.: On the analyticity of the solutions of analytic nonlinear elliptic systems of partial differential equations. Amer. J. Math., 80, 198-237 (1958).

[^0]: 1) $\langle\boldsymbol{u}, \varphi\rangle$ denotes the value of the functional \boldsymbol{u} at φ.
[^1]: 2) Details will be published elesewhere.
