181. On the Analyticity and the Unique Continuation Theorem for Solutions of the Navier-Stokes Equation

By Kyûya Masuda

Department of Mathematics, University of Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., Nov. 13, 1967)

1. Introduction. Consider the Navier-Stokes equation (1) $u_t + (u \cdot \operatorname{grad})u = \Delta u - \nabla p + f$, div u = 0, $x \in G$, 0 < t < T, and the condition of adherence at the boundary

(2) u=0 on the boundary of G.

Here G is a connected component of exteriors (or interiors) of a bounded hypersurface of class C^2 , u and f are 3-dimensional real vector functions of x and t, and p is a scalar function of x and t. We are mainly concerned with the question whether a nonconstant flow of incompressible fluid, subject to the Navier-Stokes equation (1) with f=0 and the condition (2) of adherence at the boundary, can ever come to rest in a finite time on some potion of G. Before stating our results, we shall define function spaces, and fix our notations. For any open set Q in \mathbb{R}^n , $W^{k,p}(Q)$ $(k \ge 0, 1 \le p < \infty)$ is the set of all complex-valued vector functions in $L^{p}(Q)$ for which distribution derivatives of up to order k lie in $L^{p}(Q)$. $W^{k,p}(Q)$ (k>0) is the set of all distributions u such that $|\langle u, \varphi \rangle^{(1)}| \leq C ||\varphi||_{L^p}$ for φ in $C_0^{\infty}(Q)$, C being a positive constant, where $||\varphi||_{L^p}$ is the L^p-norm of φ . $W_{loc}^{k,p}(Q)$ $(k=0,\pm 1,\cdots)$ is the set of all distribution u on Q which coincide on some neighborhood of each point of Q with elements of $W^{k,p}(Q)$. The set of all 3-dimensional real vector functions φ such that $\varphi \in C_0^{\infty}(G)$, and div $\varphi = 0$, is denoted by $C_{0,s}^{\infty}(G)$. Let $L_s^2 = L_s^2(G)$ be the closure of $C_{0s}^{\infty}(G)$ in $L^2(G)$. Let P be the orthogonal projection from $L^2(G)$ onto L^2_s . By A we denote the Friedrichs extension of the symmetric operator $-P \varDelta$ in L_s^2 defined for every u such that $u \in C^2(G) \cap C^1(G^a)$, div u = 0, and u = 0 on the boundary of G, G^{α} being the closure of G. By X_{γ} we denote the set of all u in $D(A^{r})$ with the norm $||u||_{X_{r}} = ||A^{r}u|| + ||u||, D(A^{r})$ being the domain of A^{γ} , where γ is any number with $3/4 < \gamma < 1$. We let $X = X_{4/5}$. Here $\|\cdot\|$ is the norm of the Hilbert space $L^2(G)$ with the scalar product (\cdot, \cdot) . Let $H_{0,s}^1 = H_{0,s}^1(G)$ be the completion of the set $C_{0,s}^{1}(G)$ of all solenoidal (div u=0) functions in C_{0}^{1} with the norm $|| \nabla u || + || u ||$. Now our results are as follows.

¹⁾ $\langle u, \varphi \rangle$ denotes the value of the functional u at φ .

Theorem 1. Let there exists an analytic extension $f(z)=f(\cdot, z)$ of $f(t)=f(\cdot, t)$ such that f(z) is an L^2_s -valued holomorphic function of z in some neighbourhood Ω of (0, T). Let u be a solution of (1), (2) such that $u(\cdot, t)$ is an $H^1_{0,s}$ -valued continuous function of t in (0, T). If f(x, z) is analytic in (x, z) in some nonempty open subset $G_0 \times \Omega$ of $G \times \Omega$, then there exists an analytic (in x and t) function $u^*(x, t)$ on $G_0 \times (0, T)$ such that for each t in (0, T) $u^*(x, t)=u(x, t)$, $x \in G_0$, after a correction on a null set of the space R^3 .

Theorem 2. Let u be a solution of (1), (2) with f=0 such that $u(\cdot, t)$ is an $H_{0,s}^{1}$ -valued continuous function of t in (0, T). If there exist a nonempty open set G_{1} in G and a t_{1} with $0 < t_{1} < T$ such that $u(x, t_{1})=0, x \in G_{1}$, then u vanishes identically in $G \times (0, T)$.

Here by a solution u of (1), (2), we mean a locally square summable function u(x, t) on $G \times (0, T)$ with the following properties: (i) u(x, t) is weakly divergent free, i.e. $\int (u, \operatorname{grad} \omega) dt = 0$ for all scalar function $\omega \in C_0^{\infty}(G \times (0, T))$, (ii) $\int \{(u, \Phi_t) + (u, \Delta \Phi) + (u, u \cdot \operatorname{grad} \Phi) + (f, \Phi)\} dt = 0$ for all C^{∞} vectors Φ which are solenoidal and have compact support in $G \times (0, T)$.

It is to be noted that the above theorems give partial answers to Serrin's conjectures [1].

2. Lemmas for the proof of the theorems. Lemma 1. (a) $D(A^{1/2}) = H^1_{0,s}$, and $||A^{1/2}\boldsymbol{u}|| = ||\boldsymbol{\nabla}\boldsymbol{u}||$ for $\boldsymbol{u} \in D(A^{1/2})$. (b) For any bounded open set E in G, its closure being contained in G, there exists a constant C = C(E) such that ess. $\sup_{x \in E} |v(x)| \leq C ||v||_x$, $v \in X$.

For the proof see Fujita-Kato [2].

Lemma 2. There exists an analytic extension $\mathbf{u}(z) = \mathbf{u}(\cdot, z)$ of $\mathbf{u}(t) = \mathbf{u}(\cdot, t)$ $(t \in (0, T))$ such that $\mathbf{u}(z)$ is an X-valued holomorphic function of z in some neighbourhood U, contained in Ω , of (0, T) in the complex plane, satisfying the equation $\partial(\mathbf{u}, \varphi)/\partial z = -(\mathbf{u}, A\varphi) - ((\mathbf{u} \cdot \operatorname{grad})\mathbf{u}, \varphi) + (\mathbf{f}, \varphi)$ for φ in $C_{0,s}^{\infty}(G)$ and z in U.

An outline of the proof of Lemma 2 will be given in section 4.

3. Proof of Theorem 1. We set $v(x, z) = \operatorname{rot}_{x} u(x, z) (\equiv \operatorname{rot} u(x, z))$, $u(x, \xi, \eta) = u(x, \xi + i\eta), v(x, \xi, \eta) = v(x, \xi + i\eta)$, and $f(x, \xi, \eta) = f(x, \xi + i\eta), x \in G, \xi + i\eta \in U$. Then for any φ in $C_0^{\infty}(G)(u(\cdot, \xi, \eta), \varphi)$, and $(v(\cdot, \xi, \eta), \varphi)$ are harmonic functions of ξ and η , since $u(\cdot, z)$, and $v(\cdot, z)$ are L_s^2 -valued holomorphic functions of z. Hence we have

 $(3) \qquad ((\boldsymbol{u}, [\partial^2/\partial\xi^2 + \partial^2/\partial\eta^2]\boldsymbol{\varphi}\psi)) = 0,$

(4) $((\boldsymbol{v}, [\partial^2/\partial\xi^2 + \partial^2/\partial\gamma^2]\boldsymbol{\varphi}\psi)) = 0$

for any vector φ in $C_0^{\infty}(G_0)$ and any scalar ψ in $C_0^{\infty}(U_0)$, where $U_0 = \{(\xi, \eta); \xi + i\eta \in U\}$ and $((\cdot, \cdot))$ is the scalar product in $L^2(G_0 \times U_0)$. Using the relation rot rot = grad div $-\Delta$, we have $(u, -\Delta \varphi) = (v, \operatorname{rot} \varphi)$, $\varphi \in C_0^{\infty}(G_0)$, since $(u, \operatorname{grad} \operatorname{div} \varphi) = 0$ in virtue of the fact that $u \in L^2_*$. Consequently,

(5) $((\boldsymbol{u}, \Delta \boldsymbol{\varphi} \psi)) = -((\boldsymbol{v}, \operatorname{rot} \boldsymbol{\varphi} \psi))$ for $\boldsymbol{\varphi}$ in $C_0^{\infty}(G_0)$ and ψ in $C_0^{\infty}(U_0)$. On the other hand, noting that $\operatorname{rot} \boldsymbol{\varphi} \in \boldsymbol{L}_s^2$ for $\boldsymbol{\varphi} \in C_0^{\infty}(G_0)$, we have, by Lemma 2, $\partial(\boldsymbol{u}, \operatorname{rot} \boldsymbol{\varphi})/\partial \xi$ $= (\boldsymbol{u}, \Delta \operatorname{rot} \boldsymbol{\varphi}) - ((\boldsymbol{u} \cdot \operatorname{grad})\boldsymbol{u}, \operatorname{rot} \boldsymbol{\varphi}) + (\boldsymbol{f}, \operatorname{rot} \boldsymbol{\varphi}), (\xi, \eta) \in U_0$, so that (6) $((\boldsymbol{v}, [\partial/\partial \xi + \Delta] \boldsymbol{\varphi} \psi)) - (((\boldsymbol{u} \cdot \operatorname{grad})\boldsymbol{u}, \operatorname{rot} \boldsymbol{\varphi} \psi)) + ((\operatorname{rot} \boldsymbol{f}, \boldsymbol{\varphi} \psi)) = 0$ for any $\boldsymbol{\varphi}$ in $C_0^{\infty}(G_0)$ and any ψ in $C_0^{\infty}(U_0)$. By adding (3) to (5), and (4) to (6), we have

$$((\boldsymbol{u}, [\partial^2/\partial\xi^2 + \partial^2/\partial\eta^2 + \Delta]\boldsymbol{\varphi}\psi)) + ((\boldsymbol{v}, \operatorname{rot}\boldsymbol{\varphi}\psi)) = 0$$

and

$$\begin{array}{l} ((\boldsymbol{v}, \left[\partial^2/\partial\xi^2 + \partial^2/\partial\eta^2 + \varDelta + \partial/\partial\xi\right]\boldsymbol{\varphi}\psi)) - (((\boldsymbol{u} \cdot \operatorname{grad})\boldsymbol{u}, \operatorname{rot} \boldsymbol{\varphi}\psi)) \\ + ((\operatorname{rot} \boldsymbol{f}, \boldsymbol{\varphi}\psi)) = 0, \end{array}$$

for $\varphi \in C_0^{\infty}(G_0)$, and $\psi \in C_0^{\infty}(U_0)$. Since the totality of finite sums $\sum \varphi_j \psi_j$ with $\varphi_j \in C_0^{\infty}(G_0)$ and $\psi_j \in C_0^{\infty}(U_0)$ is dense in $C_0^{\infty}(G_0 \times U_0)$ in the topology of $D(G_0 \times U_0)$ (see L. Schwartz [3] p. 107), we obtain (7) $((\boldsymbol{u}, \lceil \partial^2/\partial \eta^2 + \partial^2/\partial \xi^2 + \Delta \rceil \boldsymbol{\varphi})) + ((\boldsymbol{v}, \operatorname{rot} \boldsymbol{\varphi})) = 0.$

(8)
$$((v, \lfloor \partial^2/\partial\xi^2 + \partial^2/\partial\eta^2 + \Delta + \partial/\partial\xi \rfloor \Phi)) - ((\lfloor u \cdot \operatorname{grad} \rfloor u, \operatorname{rot} \Phi)) + ((\operatorname{rot} f, \Phi)) = 0$$

Since $u(\cdot, z)$ is an X-valued, and so $H^1_{0,s}$ -valued, holomorphic function of z, we see that $v(\cdot, z)$ is an $L^2(E)$ -valued holomorphic function of z in view of rot u = v, and that $u(\cdot, z)$ is an $L^{\infty}(E)$ -valued continuous function of z in view of the fact that ess. $\sup_{x \in E} |u(x, z)| \leq C || u(\cdot, z) ||_x$ for some constant C, independent of z, by Lemma 1. Hence $v \in L^2(K)$ and $u \in L^{\infty}(K)$. Since

 $||(u \cdot \operatorname{grad})u||_{L^{2}(K)} \leq (\operatorname{ess. sup}_{K} | u |) || \not \sqsubset u || \leq (\operatorname{ess. sup} | u |) || u ||_{X}$ by Lemma 1, we have $(u \cdot \operatorname{grad})u \in L^{2}(K)$, from which it follows that rot $f - \operatorname{rot} (u \cdot \operatorname{grad})u \in W^{-1,2}(K)$. We have, by (8), $(\partial^{2}/\partial\xi^{2} + \partial^{2}/\partial\eta^{2} + \Delta - \partial/\partial\xi) v \in W^{-1,2}_{\operatorname{loc}}(K)$. Hence, applying the interior regularity theorem (I. R. THM.) of weak solutions of elliptic equations, we have $v \in W^{1,2}_{\operatorname{loc}}(K)$, so that $(\partial^{2}/\partial\xi^{2} + \partial^{2}/\partial\eta^{2} + \Delta - \partial/\partial\xi)u = \operatorname{rot} v \in L^{2}_{\operatorname{loc}}(K)$ by (8). Hence $u \in W^{2,2}_{\operatorname{loc}}(K)$. By Sobolev's lemma, $v \in W^{1,2}_{\operatorname{loc}}(K)$ implies $v \in L^{10/3}_{\operatorname{loc}}(K)$. Also we have $u \in W^{1,10/3}_{\operatorname{loc}}(K)$. By the arbitrariness of the choice of K, $v \in L^{10/3}(K)$ and $u \in W^{1,10/3}(K)$. Since

 $||(u \cdot \operatorname{grad})u||_{L^{10/3}(K)} \leq (\operatorname{ess. sup}_{K} | u|) \times ||u||_{W^{1,10/3}(K)},$ we have $(u \cdot \operatorname{grad})u \in L^{10/3}(K)$, and so rot $f - \operatorname{rot} (u \cdot \operatorname{grad})u \in W_{\operatorname{loc}}^{-1,10/3}(K).$ Hence applying the I. R. THM. to Eq. (7), and to Eq. (8) once more, we have $v \in W_{\operatorname{loc}}^{1,10/3}(K)$ and $u \in W_{\operatorname{loc}}^{2,10/3}(K)$. By the arbitrariness of the choice of K, we have (9). Next we shall show that if $u \in W^{k+1,10/3}(K)$ and $v \in W^{k,10/3}(K)$, then $u \in W^{k+2,10/3}(K)$ and $v \in W^{k+1,10/3}(K)$, k being

No. 9]

a positive integer. Let $D^{\alpha} = (\partial/\partial x_1)^{\alpha_1} (\partial/\partial x_2)^{\alpha_2} (\partial/\partial x_3)^{\alpha_3}$, $\alpha = (\alpha_1, \alpha_2, \alpha_3)$. Then we have $D^{\alpha} [(u \cdot \operatorname{grad})u] = (D^{\alpha}u \cdot \operatorname{grad})u + \sum_{\beta < \alpha} C_{\beta} (D^{\beta}u \cdot \operatorname{grad})D^{\beta - \alpha}u$ for $|\alpha| = \alpha_1 + \alpha_2 + \alpha_3 \leq k$, C_{β} being a constant independent of u. Since

$$|| (D^{\alpha} u \cdot \operatorname{grad}) u ||_{L^{10/3}(K)} \leq || D^{\alpha} u ||_{L^{20/3}(K)} \cdot || u ||_{W^{1,20/3}(K)}$$

 $\leq C || \boldsymbol{u} ||_{W^{k+1}, 10/3(K)} || \boldsymbol{u} ||_{W^{k+1}, 10/3(K)}$

by the Hölder inequality and Sobolev's lemma, we have $(D^{\alpha}u \cdot \operatorname{grad})u \in L^{10/3}(K)$. On the other hand, since

 $|| (D^{\beta} u \cdot \operatorname{grad}) D^{\alpha - \beta} u ||_{L^{10/3}(K)} \leqslant C(\operatorname{ess. sup}_{K} | D^{\beta} u |) || u ||_{W^{k+1, 10/3}(K)}$

for $\beta < \alpha$, C being a constant independent of u, we have $(D^{\beta}\boldsymbol{u} \cdot \operatorname{grad})D^{\alpha-\beta}\boldsymbol{u} \in \boldsymbol{L}^{10/3}(K)$. Here we used the fact that $\boldsymbol{u} \in \boldsymbol{W}^{k+1,10/3}(K)$ implies $D^{\beta}u \in L^{\infty}(K)$, $\beta < \alpha$, by Sobolev's lemma. Hence $(u \cdot \operatorname{grad})u$ $\in W^{k,10/3}(K)$, so that $\operatorname{rot} \boldsymbol{f} - \operatorname{rot} ((\boldsymbol{u} \cdot \operatorname{grad})\boldsymbol{u}) \in W^{k-1,10/3}(K)$. Hence applying the I.R. THM. to Eq. (7), and to Eq. (8), we have $v \in W^{k+1,10/3}(K)$ and $u \in W^{k+2,10/3}(K)$. Hence $\boldsymbol{u} \in \boldsymbol{W}^{k+1,10/3}(K)$ and $v \in W^{k,10/3}(K)$ for arbitrary positive integer k, by (9). By Sobolev's lemma there exist $u^* \in C^{\infty}(K)$, $v^* \in C^{\infty}(K)$ such that $u^* = u$, and $v^* = v$ after a correction on a null set of the space R^5 . Since rot $((\boldsymbol{u} \cdot \operatorname{grad})\boldsymbol{u}) = (\boldsymbol{u} \cdot \operatorname{grad})$ rot $\boldsymbol{u} - (\sum_{\alpha=1}^{3} (\operatorname{rot} \boldsymbol{u})_{\alpha} \cdot \partial \boldsymbol{u}_{\beta} / \partial x_{\alpha})$, we see, by (7) and (8), that a vector (u^*, v^*) satisfies a non-linear analytic elliptic system $[\partial^2/\partial\xi^2 + \partial^2/\partial\eta^2 + \varDelta] \boldsymbol{u}^* + \operatorname{rot} \boldsymbol{v}^* = 0, \quad [\partial^2/\partial\xi^2 + \partial^2/\partial\eta^2 + \varDelta + \partial/\partial\xi] \boldsymbol{v}^*$ $-(\boldsymbol{u}^*\cdot\operatorname{grad})\boldsymbol{v}^*-(\sum_{\alpha=1}^3\boldsymbol{v}_{\alpha}^*\cdot\partial\boldsymbol{u}_{\beta}^*/\partial\boldsymbol{x}_{\alpha})-\operatorname{rot}\boldsymbol{f}=0$ in $G_0\times U_0$. Applying the theorem on the analyticity of solutions of a non-linear analytic elliptic system (see Morrey [5]), we see that (u^*, v^*) is analytic in x, ξ, η in the interior of $G_0 \times U_0$. Since $(u(\cdot, z), \varphi)$ and $(v(\cdot, z), \varphi)$ are analytic in z for φ in $C_0^{\infty}(G_0)$, we have $(\boldsymbol{u}(\cdot,\xi,0),\boldsymbol{\varphi}) = (\boldsymbol{u}^*(\cdot,\xi,0),\boldsymbol{\varphi})$ and $(\boldsymbol{v}(\cdot,\xi,0),\boldsymbol{\varphi}) = (\boldsymbol{v}^*(\cdot,\xi,0),\boldsymbol{\varphi})$. Hence for each t in (0,T) $\boldsymbol{u}(x,t)$ $= u^*(x, t, 0)$ and $v(x, t) = v^*(x, t, 0)$, $x \in G_0$, after a correction on a null set of the space R^3 . This shows that u(x, t) and v(x, t) are analytic in x and t, $x \in G_0$, $t \in (0, T)$. Theorem 1 is thus proved.

Proof of Theorem 2. Since u(x, t) is analytic in x and t $(x \in G, t \in (0, T))$ by Theorem 1, the assumption $u(x, t_1)=0, x \in G_1$, implies that $u(x, t_1)=0, x \in G$, so that $v(x, t_1)=0, x \in G$. Since vsatisfies the equation $\partial v/\partial t = \Delta v - \operatorname{rot}((u \cdot \operatorname{grad})u)$, we have $v_t(x, t_1)=0$, and so $\operatorname{rot} u_t(x, t_1)=0, x \in G$. Since $u_t(x, t) \in H_{0,s}^1(G)$ and div $u_t(x, t)=0$ by the $H_{0,s}^1(G)$ -valued analyticity of $u(\cdot, t)$ (see Lemma 2), we have $u_t(x, t_1)=0, x \in G$. Hence $v_{tt}(x, t_1)=\Delta v_t(x, t_1)-\operatorname{rot}((u_t \cdot \operatorname{grad})u)\cdot(x, t_1)$ $-\operatorname{rot}((u \cdot \operatorname{grad})u_t)\cdot(x, t_1)=0, x \in G$. Taking into account that $u_{tt}(x, t_1)$ $\in H_{0,s}^1(G)$ and div $u_{tt}(x, t_1)=0$, we have $u_{tt}(x, t_1)=0, x \in G$. Applying the same argument, we have $(\partial/\partial t)^k u(x, t_1)=0, x \in G, k=1, 2, \cdots$. For any φ in $C_0^{\infty}(G)$ $(u(\cdot, t), \varphi)$ has a zero of infinite order at t_1 . By the analyticity in t of $(u(\cdot, t), \varphi)$, $(u(\cdot, t), \varphi)=0$ for any φ in $C_0^{\infty}(G)$ and any t in (0, T), showing that u(x, t) vanishes identically on Solutions of Navier-Stokes Equation

 $G \times (0, T)$. Theorem 2 is thus proved.

4. Proof of Lemma 2.²⁾ In this section we shall outline the proof of Lemma 2. At first we note that u(t) is an X-valued continuous function of t in (0, T), satisfying the equation

$$\boldsymbol{u}(t) = \exp((-tA)\boldsymbol{u}(T_0) + \int_{T_0}^t \exp((-(t-s))\{f(s) + F[\boldsymbol{u}(s)]\}ds,$$

 $T_0 \leqslant t \leqslant T$, where T_0 is any number in (0, T), and $F[v] = P((v \cdot \operatorname{grad})v)$; see Fujita-Kato [2]. Let ε be an arbitrary number with $0 < \varepsilon < T/2$, and θ be a number such that the set $\{z; \varepsilon \leqslant \operatorname{Re} z \leqslant T - \varepsilon, |z - \varepsilon| \cos \theta \leqslant \operatorname{Re} z - \varepsilon\}$ is contained in Ω . We set $S(\varepsilon, \delta; T_0) = \{z; T_0 \leqslant \operatorname{Re} z \leqslant T_0 + \delta, |z - T_0| \cos \theta \leqslant \operatorname{Re} z - T_0\}$. Let $\{u_{N,k}(z; T_0); N = 1, 2, \cdots, k = 1, 2, \cdots\}$ be a sequence of X-valued functions defined through $u_{N,0}(z; T_0) = 0$ and $u_{N,k}(z; T_0) = \exp(-(z - T_0)A_N)u(T_0)$

$$+\int_{\tau}\exp{(-(z-\zeta)A_{\scriptscriptstyle N})}\{f(\zeta)+F[u_{\scriptscriptstyle N,k-l}(\zeta)]\}d\zeta, \qquad k\geqslant 1,\,z\in S(arepsilon,\,\delta;\,T_{\scriptscriptstyle 0}),$$

the path γ of integration being the segment $[T_0, z]$, where $A_N = \int_0^N \lambda \, dE(\lambda)$, $E(\lambda)$ being the spectral family associated with A. Then there exists a $\delta = \delta(\varepsilon) > 0$, independent of N, such that for any T_0 with $\varepsilon \leqslant T_0 \leqslant T \ \boldsymbol{u}_{N,k}(z; T_0)$ are X-valued holomorphic functions of z, converging uniformly on $S(\varepsilon, \delta; T_0)$ to a limit $\boldsymbol{u}_N(z; T_0)$ as $k \rightarrow \infty$ in the norm of X. Hence $\boldsymbol{u}_N(z; T_0)$ are X-valued holomorphic (continuous) functions of z in the interior of $S(\varepsilon, \delta; T_0)$ (on $S(\varepsilon, \delta; T_0)$), satisfying the equation

$$\boldsymbol{u}_{N}(\boldsymbol{z}; T_{0}) = \exp\left(-\boldsymbol{z}A_{N}\right)\boldsymbol{u}(T_{0}) + \int_{\gamma} \exp(-(\boldsymbol{z}-\boldsymbol{\zeta})A_{N})\{\boldsymbol{f}(\boldsymbol{\zeta}) + \boldsymbol{F}[\boldsymbol{u}_{N}(\boldsymbol{\zeta}; T_{0})]\}d\boldsymbol{\zeta}.$$

It is easy to see that $u_N(z; T_0)$ converges uniformly on $S(\varepsilon, \delta; T_0)$ to a limit $u_{\infty}(z; T_0)$ as $N \rightarrow \infty$ in the norm of X. This limit $u_{\infty}(z; T_0)$ satisfies the equation

$$\boldsymbol{u}_{\infty}(\boldsymbol{z}; T_{0}) = \exp\left(-\boldsymbol{z}A\right)\boldsymbol{u}(T_{0}) + \int_{T} \exp\left(-(\boldsymbol{z}-\boldsymbol{\zeta})A\right)\{\boldsymbol{f}(\boldsymbol{\zeta}) + F[\boldsymbol{u}_{\infty}(\boldsymbol{\zeta}; T_{0})]\}d\boldsymbol{\zeta}.$$

In particular $\boldsymbol{u}_{\infty}(t; T_0)$ satisfies the equation

(10) $u_{\infty}(t; T_0) = \exp(-tA)u(T_0) + \int_{T_0}^t \exp(-(t-s)A)\{f(s) + F[u_{\infty}(s)]\}ds$ for t in $[T_0, T_0 + \delta)$. It is known that Eq. (10) has a unique solution within the class $C([T_0, T_0 + \delta); X)$, and that u(t) is an X-valued continuous function of t in $[T_0, T_0 + \delta)$, satisfying Eq. (10). Hence $u_{\infty}(t; T_0) = u(t)$ for t in $[T_0, T_0 + \delta)$, so that $u_{\infty}(z; T_0) = u_{\infty}(z; T_1)$ for $z \in S(\varepsilon, \delta; T_0) \cap S(\varepsilon', \delta'; T_1)$. We define $U = \bigcup S(\varepsilon, \delta; T_0)$ $(0 < \varepsilon < T/2, 0 < T_0 < T)$ and $\hat{u}(z) = u_{\infty}(z; T_0)$ for z in $S(\varepsilon, \delta; T_0)$. Then $\hat{u}(z)$ is an X-valued holomorphic function, defined in U, with desired properties.

Acknowledgements. The author wishes to express his hearty thanks to Prof. H. Fujita who showed an interest in this work

No. 9]

²⁾ Details will be published elesewhere.

and stimulated him, and also to Prof. S. Itô for kind advices on the proof of Lemma 2.

References

- [1] Serrin, J.: The initial value problem for the Navier-Stokes equations. Nonlinear Problems, ed. Langer. The University of Wisconsin Press (1963).
- [2] Fujita, H., and Kato, T.: On the Navier-Stokes initial value problem. I. Arch. Rat. Mech. Anal., 16, 269-315 (1964).
- [3] Schwartz, L.: Théorie des Distributions. I. Hermann, Paris (1950).
- [4] Browder, F.: Functional analysis and partial differential equations. II. Math. Ann., 145, 81-226 (1962).
- [5] Morrey, C.: On the analyticity of the solutions of analytic nonlinear elliptic systems of partial differential equations. Amer. J. Math., 80, 198-237 (1958).