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5. A Remark on the Contraction Principle

By Shouro KASAHARA
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In his paper [1], E. Dubinsky states the following fixed point
theorem:

Let X, be an open neighborhood of 0 in a complete locally convex
space E, and let f be a mapping of x,+X, where x,¢ E, into E
satisfying the condition that there exist a non-empty closed bounded
convex subset B of X, and a non-negative real number k<1 such that

z,yex,+X, and x—y e AB imply f(x)—f(y) e ikB.
Then if f(x,)—x,€(l—k)B, f has a unique fixed point in z,+ B.

The proof is, in a sense, analogous to that of the well-known
Banach contraction theorem, and so it will be natural to ask the
relation between these two theorems. The purpose of this note is
to clarify the positions of these theorems. That is we shall state
a basic theorem (Theorem 1 below) from which these theorems follow,
and we shall give a slight generalization of the theorem of Dubinsky
(Theorem 2).

The vector spaces we shall be concerned with in this note are
over the real number field R or the complex number field. We employ
the following notations: [0,a]={fe R; 0<é<a} and [0,a)={¢ecR;
0<é<a} where a is a positive real number,

1. A triple <X, D,d> of a set X, a subset D of XXX and a
non-negative real valued function d defined on D is called a premetric
space (and d a premetric for X with domain D) if the following two
conditions are satisfied:

(P 1) For every z¢ X, (x,x)e D, and d(x, x)=0.

P 2) If (x,v),(y,2)e D, then (x,2)e D and

d(x, 2)<d(x, y)+d(y, 2).

Let <X, D, d> be a premetric space. If M is a subset of X,
then <M, DN (MxXM),d|rnuxmy i also a premetric space, where
d|pnursan denotes the restriction of d to DN (Mx M); we shall call
it a subspace of <X, D,d> and denote simply by M.

If d is a premetric for a set X with domain D, then by setting
d*(x, y)=d(y, «) for every (y, x) € D, a premetric d* for X with domain
{(z, ¥); (¥, ) € D} is obtained; we shall call d* the dual premetric of d.

A sequence {x,} in a premetric space <X, D, d) is r-convergent
to xe X if (x,x,) e D for every m, and if there exists, for each ¢<0,
a positive integer =, such that d(zx, #,)<e¢ whenever n>n,. A
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sequence is l-comvergent to x if it is r-convergent to x relative to
the dual premetric of d. We say that a premetric space <X, D, d)
is r-separated if every sequence in X is r-convergent to at most one
point of X, If (X, D,d) is an r-separated premetric space, then as
can be readily seen d(z,y)=0 implies x=y. It is clear that each
subspace of an r-separated premetric space is r-separated. A sequence
{x,} in a premetric space <X, D,d> is an r-Cauchy sequence if
(X, ,) € D for m>n, and if for each >0, there exists a positive
integer n, such that m>n>n, implies d(z,,, #,)<<é. An r-convergent
sequence needs not be an r-Cauchy sequence. A premetric space
(X, D, d)is r-complete if every r-Cauchy sequence in it is r-convergent.

Dually the [-separatedness, the [-Cauchy sequences, and the
l-completeness are defined. In what follows, without Lemma 2, we
confine ourselves to the case where “r” is prefixed. However, every
result may be translated by the duality to the other case.

Let X be a set, and let D a subset of Xx X. For each ac X,
we denote by D(a) the set of all xe X with (x, a) e D.

We conclude this section by the following lemma which may be
verified easily.

Lemma 1. If {X, D,d) is an r-complete premetric space, then
for each positive real number « and ac X, the subspace {xc D(a);
d(z, a)<a} is r-complete.

2. Let (X, D,d> be a premetric space, and let ke [0,1). A
mapping f of X into itself is called a k-contraction if (x, y)e D
implies (f(2), f(y)) € D and d(f(x), f(y))<kd(x, y).

It is easy to see that, in an r-separated premetric space <X, D, d),
if ¢, ye X are fixed points of a k-contraction with k€ [0,1) and if
(¢,y)e D, then x=y.

Now we can state the Banach contraction theorem for premetric
spaces:

Theorem 1. Let {X, D, d> be an r-separated premetric space,
and f a k-contraction of X into itself with ke[0,1). If there
exists a point ae X such that (f(a),a)e D, and if the subspace
M={x e D(a); d(x, a)<(1—Fk)d(f(a), @)} s r-complete, then there
exists o unique « € D(a) such that f(x)=wx; moreover xc M and the
sequence {f"(a)} is r-convergent to x.

Proof. Since (f(a), @) € D, each pair (f"(a), f"(a)), n=1, 2,+--,
does belong to D. Hence by induction, we can show that, for each
positive integer =, (f"(a), @) e D and

d(f(@), @) <d(f(@), @) +d(f* (@), @)+ -+ +d(f(a), @)

<(A—k)"d(f(a), a),
and so we have, for every positive integer m,
a(f**™(a), fH@)<k"d(f™(a), ) <k"(1—k)~"d(f(a), @).
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This inequality shows that {f"(a)} is an r-Cauchy sequence in the
subspace M. Consequently, it is r-convergent to a point x € M, that
is, for each ¢>0, there is a positive integer n, such that n>n,
implies d(x, f*(a))<e, and hence we have
d(f(x), f™(a)<kd(x, f~Xa)<e for every n>n,+1.

Thus the sequence {f"(a)} is also r-convergent to f(x). Since the
premetric space is r-separated, this implies f(z)=x. Now if y e D(a)
and f(y)=y, then the inequality d(y, f"(a))<k"d(y,a) shows that
{f"(@)} is r-convergent to y, and so we have y=2x by the same reason.
This completes the proof.

3. A subset B of a vector space E is said to be star-shaped
if 2B B for every 2e€[0,1]. For each subset B of E, we denote
by S(B) the union of all 2B with 2¢[0,1]. If B is convex, then
S(B) coincides with the convex hull of the set {0} UB. A subset
B of E is circled if |1|<1 implies 2B C B.

Lemma 2. Let B be a non-empty bounded star-shaped convex
subset of a Hausdorff topological vector space E. Denote by D the
set of all (x,y)e Ex E such that x—y e B for some 1>0, and put,
for each (x,y)e D,

d(z, y)=inf {1>0; x—y € AB}.
Then <{E, D,d> is an r-separated and l-separated premetric space.

Proof. The condition (P 1) is obviously satisfied. To verify
the condition (P 2), let (x, y), (¥,2)e D. Then for some 1>0 and
©>0, we have v —y e 1B and y—z¢e #B, which imply x—ze (1+ ¢)B.
This shows that (x, z) € D and d(x, 2) <d(x, y) +d(y, 2). Thus {E, D,d>
is a premetric space. Now let {x,} be a sequence in E which is
r-convergent (resp. l-convergent) to two points z, y € E at the same
time. For each neighborhood U of 0 in E, we can find a circled
neighborhood V of 0 in E such that V+V c U. Take an ¢>0 with
eBc V. Then for sufficiently large n, both x—=«, and y—=, (resp.
xz,—« and x,—y) belong to ¢B. Since V is circled, —y+2, (resp.
x—wx,) belongs to V, and hence we have x—y=w—2a,+x,—yecV
+VcU. Since E is Hausdorff, it follows that x=y. Therefore
{E, D, dy is r-separated and I-separated.

Lemma 3. If B is a sequentially complete bounded subset of
o Hausdorff topological vector space E, then S(B) is sequentially
complete,

Proof. Denote by e(B) the set of all xe B such that ixéB
for every 2>1. We shall show first that, for each xzec B, there
exists a 2,>1 with Axce(B). Let },=sup{i; ixe B}). Then 2,>1,
and we can find a sequence {1,} in {1; 2z ¢ B} which converges to ,.
Since the sequence {1,x} converges to 1, and since B is sequentially
complete, 2.« belongs to B. In addition, 2>>1 implies 22,2 € B. Thus
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A% €e(B). Now let {a,} be a Cauchy sequence in S(B). Then for
each positive integer 7, we can find a 1,¢[0,1] and an z, € ¢(B)
such that a,=1,2,. The sequence {1,} contains a convergent sub-
sequence. Since {a,} is a Cauchy sequence, it suffices to show that
a subsequence of {a,} converges to an element of S(B), and so we
may assume without loss of generality that the sequence {1,} converges
to a number 2e[0,1]. Let U be an arbitrary neighborhood of 0 in
E. Then there exists a circled neighborhood V of 0 in E such that
V+Vc U. Take a positive real number 8 with SBc V. If 1=0,
then we can find a positive integer n, for which we have 1,, <3 for
every m>n,; consequently we have a,=2,%, € U, which shows that
{a,} converges to 0e S(B). Now consider the case where 1£0. We
can assume that 1,#0 for every n. Let 0<e< min {1, 282/(2+ 5)}.
Then there exists a positive integer n, such that
| An—21<¢e/2 and 2,%,— 2,2, € A—&)V for every m, n>n,.

We have, for every m, n>n,,

€

A €
L ,
]Zm D
2
and hence
I A
(Z 1>xne(zm 1>B<: V.

On the other hand, since 0<1—e<2,, we have

xm—%mn € ( Zx—e )Vc 14 for every m, n>mn,.

m m

Therefore, if m, n>mn,, then we have

xm—xn=wm—j—”xn+(§£—l)xn eV+VcUl.

It follows that {x,} is a Cauchy sequence in B, and so it converges
to an element ¢ € B. Since the sequence {2,} converges to 1, the
sequence {a,} converges to ia. This completes the proof.

Now we have the following theorem.

Theorem 2. Let X, be a subset of a Hausdorf topological
vector space E, and f a mapping of X, into E satisfying the condition
that there exists a mom-empty sequentially complete bounded convex
subset B of E and a ke[0,1) such that

z,ye X, and ©t—y e 1B(A>0) imply f(x)—fly) € kB.
If there exists an element a € E such that a+S(B)cC X, and f(a)
—acaB, where ac[0,1—k7], then f has a unique fized point in
a+a(l—k)"'B; moreover the sequence {f"(a)} converges to the fixed
poOINt.

Proof. Let us denote by X the set of all xe X, such that
f™x) e X, for every positive integer n». Then, the restriction of f



No. 1] Remark on Contraction Principle 25

to X is a mapping of X into X. We shall show that a+ S(B) is
contained in X, To this end, take an arbitrary element x of a+ S(B).
Then for some 1e[0,1], the element x—a belongs to iAB, and so
we have f"(x)— f"(a)e Ak"B for every positive integer n. On the
other hand, since f(a)—acaB, we have f"(a)—f"'(a)cak™'B for
every n>2, Consequently we have, for every positive integer =,
() fr@)—e=fr@)— @)+ f(a)— @)+ -+ fla)—a

e k"B+ak*'B+.--+aB

c<2k”+a1_kn >B=B’,

1-k

where the set B’ is contained in S(B), because of the relation

0£<2k”+0z11_l]in)gl—(l—z)k"gl.

Thus we have f"(x)ea+S(B)cC X, for every positive integer =,
which establishes that a+S(B) ©X. Therefore, it suffices to prove
the theorem under the hypothesis that the mapping f is of X, into X,.

Now consider the set D of all (x, y¥) € E x E such that x—y € 28(B)
for some 21>0, and a function d on D defined by

d(xz, y)=inf {A>0; v —y € 2S(B)}.
Since the set S(B) is bounded star-shaped convex subset of E, by
virtu of Lemma 2, {E, D,d> is an r-separated premetric space, and
hence so is the subspace X,. It is clear that f is a k-contraction of
X, into X,. Moreover the hypothesis of the theorem shows that
(f(a), a) belongs to the set D. Therefore if we prove that the set
M={x e D(a); d(x, a)<(1—Fk)*d(f(a),a)} is r-complete, then it follows
from Theorem 1 immediately that f has a unique fixed point z, in
D(a) to which the sequence {f"(a)} is r-convergent. Then, for each
neighborhood U of 0 in E, a positive real number 1 exists with
2S(B) ¢ U; and hence we can find a positive integer n, such that
2,— f"(@)e2S(B)c U  for every n>mn,.

This shows that the sequence {f"(a)} converges to z, relative to the
original topology of E.

We shall proceed to prove that the set M is r-complete. Since
M is contained in the set a-+S(B), it suffices, by Lemma 1, to show
that a+S(B) is r-complete. Let {x,} be an r-Cauchy sequence in
a+S(B). Then, for each neighborhood U of 0 in E, there isa 1>0
with 2S(B) — U. Hence we can find a positive integer n, such that
m>n>mn, implies x,—x,cAS(B)c U. Thus the sequence {x,} is a
Cauchy sequence in the sequentially complete subset a+S(B). Con-
sequently, {x,} converges to an element x ca-+S(B). On the other
hand, for each >0, there exists a positive integer %, such that
m>n>mn, implies x,—x,ceS(B). It follows that {x,; m>n} is a
Cauchy sequence in x,+¢eS(B) for every n>n,, and so 2 does belong
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to #,+¢eS(B) for every n>mn, Therefore the sequence {x,} is -con-
vergent to .

It remains only to prove that the fixed point x, belongs to
a+a(l—k)'B. It is sufficient to consider the case where a=0. By
the relation (x), we have

fa)—aec k" +k* 2+ ... +1aB= 11__];: uB

for every positive integer n.
Now the sequence {Hl%fﬁ} converges to (1—k)/a, and {f"(a)} con-

verges to the fixed point «,. Hence the sequence {a—l_:k%z(f ”(a)—a)}

in B converges to ((1—k)/a)(x,—a), and so we obtain the desired
conclusion, since B is sequentially complete.
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