12. Note on the Nuclearity of Some Function Spaces. I

By Masatoshi NAKAMURA

(Comm. by Kinjirô KUNUGI, M. J. A., Feb. 12, 1968)

The definition of nuclearity in a general locally convex space was first given by A. Grothendieck [4]. The definition of nuclearity given by M. Gelfand and N. Ya. Vilenkin [3] concides with that of [4] in the case of countably normed spaces.

In this note, we consider the condition for nuclearity in A. Pietsch [6], which is mainly derived from A. Grothendieck. By using its condition, we shall show that $K_{\rho}\{M_A\}$ space indroduced first by I. M. Gelfand and G. E. Shilov [2] and extended by T. Yamanaka [7] is nuclear.

1. Let E be a locally convex Hausdroff space over real or complex fields and U is any absorbent and absolutely convex neighborhood of the origin in E. Let

 $p_{\scriptscriptstyle U}(x)\!=\!\inf\left\{
ho\!>\!0;\,x\in
ho\,U
ight\}\, ext{for}\,\,x\in E$ and $E_{\scriptscriptstyle U}\!=\!E/\!\{x\in E;\,p_{\scriptscriptstyle U}(x)\!=\!0\},$ then topology of $E_{\scriptscriptstyle U}$ is introduced by the norm

$$||x_{U}|| = p_{U}(x) \quad \text{for } x_{U} \in E_{U}$$

where x_{U} corresponds to $x \in E$ in a natural way.

Let $\mathcal{C}(M)$ be the sets of all continuous real or complex valued functions defined on M which is a compact Hausdroff space. Each continuous linear from μ on $\mathcal{C}(M)$ is called a *Radon measure* on Mand we frequently writes

$$\mu(f) = \int_{M} f d\mu.$$

A "positive" Radon measure is a $\mu \in C(M)$ such that $\mu(f) \ge 0$ whenever $f(x) \ge 0$ for all $x \in M$.

Let E and F be normed spaces and their closed unit balls be U and V respectively. A continuous linear mapping T of E in F is called *nuclear mapping* if there exists continuous linear form $a_n \in E'$ and $y_n \in F$ such that the following holds:

and

$$Tx = \sum\limits_N \langle x, \, a_n
angle y_n \quad ext{for} \ x \in E \ \sum\limits_N P_{U^0}(a_n) P_V(y_n) < + \infty.$$

Definition. A locally convex Hausdroff space E be called *nuclear space* when there eixsts a base U(E) of absolutely convex, absorbent 0-neighborhood such that the following equivalent conditions holds:

i) for any $U \in \mathcal{U}(E)$ there exists a $V \in \mathcal{U}(E)$ being absorbed

M. NAKAMURA

by U such that the canonical mapping from E_v on E_u is nuclear.

ii) for any $U \in \mathcal{U}(E)$, there exists a $V \in \mathcal{U}(E)$ being absorbed by U such that the canonical mapping from E'_{U^0} in E'_{V^0} is nuclear. We need the following theorem due to A. Pietsch.

Theorem 1. A locally convex Hausdroff space E is nuclear if and only if there exists a base U(E) of 0-neighborhood in E such that the following holds:

(N) for any $U \in U(E)$ there exists a $V \in U(E)$ and a positive Radon measure μ defined on the weakly compact polar V° such that

$$p_{U}(x) \leq \int_{V^{0}} |\langle x, a \rangle| d\mu \quad \text{for } x \in E.$$

The proof is given in [6].

2. $K_{g}\{M_{A}\}$ space and it's nuclearity.

Let Ω be a open set in \mathbb{R}^n , $x = (x_1, x_2, \dots, x_n)$, $\xi = (\xi_1, \xi_2, \dots, \xi_n)$ be variable points in Ω and $|x| = \left(\sum_{j=1}^n x_j^2\right)^{1/2}$, $D^{\alpha} = D_1^{\alpha_1} \cdots D_n^{\alpha_n}$, $|\alpha| = \alpha_1 + \cdots + \alpha_n$ where $D_j = \partial/\partial x_j$, $\alpha = (\alpha_1, \dots, \alpha_n)$, $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$. $\alpha \ge \beta$ means $\alpha_j \ge \beta_j$ for $j = 1, 2, \dots, n$ and $\frac{a}{b} = \left(\frac{a_1}{b_1}, \dots, \frac{a_n}{b_n}\right)$, $\frac{ak}{b} = \left(\frac{a_1k_1}{b_1}, \dots, \frac{a_nk_n}{b_n}\right)$ where $a = (\alpha_1, \dots, \alpha_n)$, $b = (b_1, \dots, b_n)$, $k = (k_1, \dots, k_n)$ and we obey the rule $0 \cdot \infty = \infty \cdot 0 = 0$, $\frac{\infty}{\infty} = \frac{0}{0} = 0$.

Definition. Let A be any directed index set. We assume that $M_p(x, q)(p \in A)$ is measurable on Ω with respect to x for each multi-index q and satisfies the following two conditions:

(i) $M_p(x,q) \ge 0$ for any p in A, and if $p \le p'$, then $M_p(x,q) \le M_{p'}(x,q)$

(ii) for each $p \in A$ and multi-index q', there exists a constant C depending on p, q', and p' such that the inequality

$$M_p(x,q) \leq C M_{p'}(x,q+q') \tag{1}$$

holds for all multi-index q.

Next, we put

 $|| \varphi ||_{p} = \sup \{M_{p}(x, q) | D^{q}\varphi(x) | | x \in \Omega, q; \text{ multi-index}\},$ (2) where φ is any infinitely differentiable function. Then denote by $K_{g}\{M_{A}\}$ sets of all infinitely differentiable functions φ which satisfies $|| \varphi ||_{p} < +\infty$ for all $p \in A$, and topology of $K_{g}\{M_{A}\}$ be defined by the sequence of semi-norm $|| \varphi ||_{p}(p \in A).$

Here, we make the following three assumptions on the $K_{g}\{M_{A}\}$:

(P) for any p in A there exists p' > p such that to any $\varepsilon > 0$ there corresponds some $N_0 > 0$ such that if $|q| > N_0$ then

$$M_{p}(x,q) \leq \varepsilon M_{p'}(x,q) \tag{3}$$

 (N_1) for any p in A there exists $p' \ge p$ such that

No. 2]

$$m_{pp'}(x) = \sup_{q} \frac{M_{p}(x, q)}{M_{p'}(x, q)}$$
(4)

is integrable on Ω .

 (N_2) let us denote by Ω_{M_p} the sets of points (in Ω) where the $M_p(x,q)$ is not equal to zero and ∞ for some q and assume that for each $p \in A$ there exists $\gamma_p > 0$ such that $\{\xi \mid |\xi - x| \leq \gamma_p\} \subset \Omega$ for all $x \in \Omega_{M_p}$, then

(1) for any $p \in A$ there exists $p' \ge p$ and $K_{pp'} > 0$ such that for each $x \in Q_M$ if $|y-x| \le \gamma_P$ and $|q'| \le n$ then

$$M_{p}(x, q) \leq K_{pp'} M_{p'}(y, q+q')$$
 (5)

 \mathbf{or}

(2) $M_p(x,q)(p \in A)$ are monotone increasing in Ω with respect to $x \ge 0$ and monotone decreasing in Ω with respect to x < 0.

Lemma 1. If for any p in A, there exist a non-negative integer $n_0, p' \ge p$ and constant $C = C_{pp'}$ such that the following inequality holds:

$$||\varphi||_{p} \leq C \sum_{\substack{0 \leq |q| \leq n_{0}}} \int_{\mathcal{Q}} M_{p'}(x, q) | D^{q}\varphi(x) | dx < +\infty(\varphi \in K_{\mathcal{Q}}\{M_{A}\}) \quad (6)$$

then $K_{\mathcal{A}}\{M_{\mathcal{A}}\}$ is a nuclear space.

Proof. Since the continuous linear forms δ_{ϵ}^{q} defined by

 $\langle \varphi, \delta_{\xi}^{q} \rangle = M_{p'}(\xi, q) D^{q} \varphi(\xi) \text{ for } \xi \in \Omega, \ 0 \leq |q| \leq n_0$ (7) be contained in the polar of the 0-neighborhood

$$V = \{ \varphi \mid \varphi \in K_{\varrho}\{M_{A}\}, \, || \varphi ||_{p'} \leq 1 \}, \tag{8}$$

we can define a positive Radon measure μ on V° by the following equality:

$$\int_{V^0} \Phi(a) d\mu = C \sum_{0 \le |q| \le n_0} \int_{\mathcal{Q}} \Phi(\delta^q_{\xi}) d\xi \quad \text{for } \Phi \in \mathcal{C}(V^0)$$
(9)

therefore

Hence, by Theorem 1, $K_{g}\{M_{A}\}$ is a nuclear space.

Lemma 2. For sufficiently small positive number ε and γ the following inequality holds:

 $|| \varphi ||_p \leq \int_{\mathbb{T}^0} |\langle \varphi, a \rangle | d\mu \text{ for all } \varphi \in K_{\rho}\{M_A\}.$

$$|\varphi(x)| \leq A_r \sum_{\substack{|q| \leq n \\ \zeta x + \varepsilon}} \int_{\substack{|\xi - x| \leq \gamma \\ \zeta x + \varepsilon}} |D^q \varphi(\xi)| d\xi$$
(11)

or

$$|\varphi(x)| \leq B_r \sum_{|q| \leq n} \int_x^{x+\epsilon} |D^q \varphi(\xi)| d\xi$$
(12)

and
$$|\varphi(x)| \leq B'_r \sum_{|q| \leq n} \int_{x-\varepsilon}^x |D^q \varphi(\xi)| d\xi$$
 (12)'

where $\varphi \in C^{\infty}(\Omega)$, A_r , B_r , and B'_r are independent of φ .

Proof. Let r(t) (t real) be a continuous differentiable function which equal 1 at t=0 and 0 for $|t| \ge \varepsilon_1$, where ε_1 is a fixed positive number. Since

(10)

M. NAKAMURA

$$\begin{split} -\varphi(x) &= \gamma(\varepsilon_1)\varphi(x_1 + \varepsilon_1, x_2, \cdots, x_n) - \gamma(0)\varphi(x) \\ &= \int_{x_1}^{x_1 + \varepsilon_1} \frac{\partial}{\partial \xi_1} [\gamma(\xi_1 - x_1)\varphi(\xi_1, x_2, \cdots, x_n)] d\xi_1 \\ &= \int_{x_1}^{x_1 + \varepsilon_1} \left(\frac{\partial \gamma}{\partial \xi_1} \varphi + \gamma \frac{\partial \varphi}{\partial \xi_1} \right) d\xi_1 \end{split}$$

therefore we have

 $|\varphi(x)| \leq B \int_{x_1}^{x_1+\epsilon_1} |\varphi(\xi_1, x_2, \cdots, x_n)| d\xi_1 + C \int_{x_1}^{x_1+\epsilon_1} \left| \frac{\partial}{\partial \xi_1} \varphi(\xi_1, x_2, \cdots, x_n) \right| d\xi_1.$

With ε_1 , x_1 , $\gamma(x_1)$ replaced by $\varepsilon_2 > 0$, x_2 , $\gamma(x_2)$, applying the same argument to

$$\varphi(\xi_1, x_2, \cdots, x_n), \frac{\partial \varphi(\xi_1, x_2, \cdots, x_n)}{\partial \xi_1}$$

and proceeding in this way step by step, we arrive at (12) and similarly (12)', where $\varepsilon = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)$, then (11) provided we take $\varepsilon_0 \sqrt{n} < \gamma$, where $\varepsilon_0 = max(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)$.

Theorem 2. If the space $K_{g}\{M_{A}\}$ satisfies conditions (P), (N_{1}) , and (N_{2}) , then it is a nuclear space.

Proof. For any $p \in A$ there exists $p' \ge p$ such that $m_{pp'}(x)$ is integrable on Ω . (by (N_1)). Hence if $\varphi \in K_g\{M_A\}$ then

$$egin{aligned} &M_{p}(x,\,q)\mid D^{\,q}arphi(x)\mid \leq m_{p\,p'}(x)M_{p'}(x,\,q)\mid D^{\,q}arphi(x)\mid \ &\leq m_{p\,p'}(x)\sup_{x\,\in\,arphi}\,M_{p'}(x,\,q)\mid D^{\,q}arphi(x)\mid & ext{for all }x\in arphi. \end{aligned}$$

By integration

$$\sup_{q} \int_{g} M_{p}(x, q) \mid D^{q} \varphi(x) \mid dx \leq || \varphi \mid|_{p'} \left(\int_{g} m_{pp'}(x) dx \right) < +\infty.$$
(13)

Next, noting that if (P) holds then for all

$$\lim_{q \to +\infty} \sup_{x} M_{p}(x, q) | D^{q} \varphi(x) | = 0$$
(14)

we have the equality (for some positive integer n_0)

$$|\varphi||_{p} = \sup_{x \in q} \{M_{p}(x, q) \mid D^{q}\varphi(x) \mid | x \in \Omega, 0 \leq |q| \leq n_{0}\}(\varphi \in K_{p}\{M_{A}\}.$$
(15)

In the first place if we assume (N_2) (1), by (11) and (15), we have, for $\varphi \in K_{\mathcal{Q}}\{M_A\}$ and $x \in \mathcal{Q}_{M_p}$,

$$\begin{split} M_{p}(x, q) \mid D^{q}\varphi(x) \mid &\leq A_{r_{p}}M_{p}(x, q) \sum_{|q'| \leq n} \int_{|\xi-x| \leq r_{p}} \mid D^{q+q'}\varphi(\xi) \mid d\xi \\ &\leq A_{r_{p}} \cdot K_{pp'} \sum_{|q'| \leq n} \int_{|\xi-x| \leq r_{p}} M_{p'}(\xi, q+q') \mid D^{q+q'}\varphi(\xi) \mid d\xi, \end{split}$$
ence
$$\|\varphi\| \leq D \quad \sup_{|q'| \leq n} \int_{|\xi-x| \leq r_{p}} M_{p'}(\xi, q+q') \mid D^{q+q'}\varphi(\xi) \mid d\xi$$

hence $|| \varphi ||_{p} \leq D_{pp'} \sup_{|q+q'| \leq n_{0}} \int_{a} M_{p'}(\xi, q+q') | D^{q+q'} \varphi(\xi) | d\xi$

i.e.
$$||\varphi||_{p} \leq D_{pp'} \sum_{0 \leq |q'| \leq n_{0}} \int_{g} M_{p'}(x, q'') |D^{q''}\varphi(x)| dx < +\infty$$
 (16)

Next, if we assume (N_2) (2) and $x \ge 0$, then, by (1), (12), and (15), we have for $\varphi \in K_{\varrho}\{M_A\}, x \in \mathcal{Q}_{M_{\varrho}}$,

Nuclearity of Some Function Spaces. I

$$\begin{split} M_{p}(x,q) \mid D^{q}\varphi(x) \mid &\leq B_{r} \sum_{|q'| \leq n} \int_{x}^{x+\epsilon} M_{p}(\xi,q) \mid D^{q+q'}\varphi(\xi) \mid d\xi \\ &\leq CB_{r_{p}} \sum_{|q'| \leq n} \int_{x}^{x+\epsilon} M_{p'}(\xi,q+q') \mid D^{q+q'}\varphi(\xi) \mid d\xi, \end{split}$$

hence $\|\varphi\|_{p} \leq C_{pp'} \sum_{0 \leq |q''| \leq n_{0}} \int_{a} M_{p'}(x, q'') |D^{q''}\varphi(x)| dx < +\infty.$ (17) In the case of x < 0, it is quite similar by using (12)'. Therefore, by Lemma 1, $K_{q}\{M_{A}\}$ is nuclear.

Remark. It will be found with its proof in [1] or [2] what we stated without proof in 2.

References

- [1] A. Friedmann: Generalized functions and partial differential equation. Englewood Cliffs, N. J., U.S.A. (1963).
- [2] I. M. Gelfand and G. E. Shilov: Generalized Functions, Vol. 2, Space of Fundamental Functions and Generalized Functions. Moscow (1958).
- [3] I. M. Gelfond and N. Ya. Vilenkin: Generalized Functions, Vol 4, Applications of Harmonic Analysis. Berlin (1964).
- [4] A. Grothendieck: Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc. No. 16 (1955).
- [5] B. S. Mitjagin: The nuclearity and other property of the space of Type S. Trud. Mosk. Math. Ob-wa, 9 (1960).
- [6] A. Pietsch: Nukleare lokalkonvexe Räume. Berlin (1964).
- [7] T. Yamanaka: Linear topological space and generalized functions (in Japanese).
- [8] J. Wloka: Nukleare Räume von M. K.-Funktionen Meth. Z., 92 (1966).

No. 2]