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12. Note on the Nuclearity of Some Function Spaces. I

By Masatoshi TAKAMURA
(Comm. by Kinjir8 KuNtc,I, . J..., Feb. 12, 1968)

The definition of nuclearity in a general locally convex space
was first given by A. Grothendieck 4. The definition of nuclearity
given by M. Gelfand and N. Ya. Vilenkin 3_ concides with that of
4 in the case of countably normed spaces.

In this note, we consider the condition for nuclearity in
A. Pietsch 6, which is mainly derived from A. Grothendieck. By
using its condition, we shall show that K{M} space indroduced
first by I. M. Gelfand and G. E. Shilov 2 and extended by
T. Yamanaka 7 is nuclear.

1. Let E be a locally convex Hausdroff space over real or
complex fields and U is any absorbent and absolutely convex neighbor-
hood of the origin in E. Let

p() inf {p> 0; e p U} for x e E
and E=E/{x e E; p()= 0},
then topology of E is introduced by the norm

]lll=P(x) for eE
where x coresponds to e E in a natural way.

Let C(M) be the sets of all continuous real or complex valued
functions defined on M which is a compact Hausdroff space. Each
continuous linear from / on C(M) is called a Radon measure on M
and we frequently writes

l(f IMfdt.
A "positive" Radon measure is a [eC(M)’ such that g(f)_>_0
whenever f(x) >__ 0 for all x e M.

Let E and F be normed spaces and their closed unit balls be
U and V respectively. A continuous linear mapping T of E in F
is called nuclear mapping if there exists continuous linear form
a e E’ and y e F such that the following holds:

Tx , x, ay for x e E
N

and
N

Definition. A locally convex Hausdroff space E be called
nuclear space when there eixsts a base cU(E) of absolutely convex,
absorbent 0-neighborhood such that the following equivalent condi-
tions holds:

i) for any U e cU(E) there exists a V e cU(E) being absorbed
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by U such that the canonical mapping from E on E is nuclear.
ii) for any U e cU(E), there exists a V e q_](E) being absorbed

by U such that the canonical mapping from E0 in E0 is nuclear.
We need the following theorem due to A. Ptetsch.

Theorem 1. A locally convex Hausdroff space E is nuclear
if and only if there exists a base U(E) of O-neighborhood in E
such that the following holds:

(N) for any U e cU(E) there exists a V e cU(E) and a positive
Radon measure l defined on the weakly compact polar V such that

p(x) <= f (x, a} d for xe E.
vo

The proof is given in [6.
2. K{M} space and it’s nuclearity.
Let 9 be a open set in R, x-(x, x,..., x), -(, ,..., .) be

variable points in 9 and x = --( x,- D D: D:, -/

x-x...x > means+a where D=3/3x, a=(a, a.),

forj-l,,...,and "’ ’ k b b
where a-(a, ...,), b-(b, ..., b), =(, ..., k) and we obey the

rule 0.-.0-0,- 0 -0.
0

Definition. Le A be any directed index se. We assume
hag M(, q)( e A) is measurable on 9 with reseet o for each
mulgi-index q and sagisfies the following two conditions"

(i) M,(,q)0 for any p in A, and if N’, hen M(,q)

(ii) for each A and multi-index q’, there exists a constant
C deending on , q’, and p’ such tha he inequality

holds for all multi-index q,

Next, we put
-sup {M(x, q) D(x) x e , q; multi-index}, 2 )

where is any infinitely differentiable function. Then denote by
K,{M} sets of all infinitely differentiable functions which satisfies
[ [(+ for all p e A, and topology of K{M} be defined by the
sequence of semi-norm [[ [[(p e A).

Here, we make the following three assumptions on the K{M}:
(P) for any p in A there exists p’> p such that to any 0 there

corresponds some N0>0 such that if [q [>N0 then
M (x, q) ( 3

(N) for any p in A there exists p’p such that
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m,()- sup M(x, q) 4
M,(, q)

is integrable on 2.
(N) let us denote by 12 the sets of points (in I2) where the

M(, q) is not equal to zero and c for some q and assume that
for each peA there exists %>0 such that {[-]Tv} for
all e 9, then

1 ) for any p e A there exists p’p and K,> 0 such that for
each xe if y-]7 and q’Jn then

M(x, q) K,M,(y, q+ q’) ( 5
or

2 M(x, q)(p e A) are monotone increasing in 9 with respect
to x0 and monotone decreasing in 9 with respect to x<0.

Lemma 1. If for any p in A, there eist a non-egative
integer n0, p’ p and constant C C, such that the following
inequality holds:

]]AC M,(x,q)]D,(x)]dx<+(eK{M}) (6)
oqln J

then Ka{Ma} i a nuclear space.
Proof. Since the continuous linear forms 8 defined by

(, 8}-M,(, q)DF() for e 9, 0A] q An0 7
be contained in the polar of the 0-neighborhood

we can define a positive Radon measure p on V by the following
equality"

o(a)dp-C ()d for CeC(V) (9)
Olqlo

I1 <, > d or all Ka{Ma}. (10)herefore II vo
Hence, by Theorem 1, Ka[Ma} is a nuclear space.

Lemma 2. o seentgy smagg positive nmbe and 7
the follow,n9 neqaty hods"

I() a ()(x) [A

or (x) IB ,. Dq?()ld (12)

and f(x) IB; ,. D’() d (12)’

where e C(D), A, B, and B are independent of .
Proof. Let r(t) (t real) be a continuous differentiable function

which equal 1 at t 0 and 0 for 1$ where e is a fixed positive
number. Since
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therefore we have

I+i f+ x) d(x)I_<_B (, x, ..., x)l d+C (, x,

With , x, (x) replaced by e>0, x, (x), applying the same argu-
ment to

(, x, x)(, x, ..., x),
and proceeding in this way step by step, we arrive at (12)and
similarly (12)’, where e-(e, e, ..., e.), then (11) provided we take
e0<, where 0- max(e, , ..., ).

Theorem 2. If the space K,{M} satisfies conditions (P), (N),
and (N), then it is a nuclear space.

Proof. For any p e A there exists p’p such that m,(x) is
integrable on 9. (by (N)). Hence if e K,{M} then

M(x, q) Dq(x) m,(x)M,(x, q) Dq?(x)
gm,(x) sup M,(x, q)]Dq?(x) for all x e

By integration

sup M,(x, q) D(x) dx.. ,(m’(x)dx) +. (13)

Next, noting that if (P) holds then for all
lim sup M(x, q)]D(x)[-O (14)
lq]+

we have the equality (for some positive integer n0)
[-sup{M(x, q) D(x)] xeg, O]q]no}(FeK{M}. (15)

$q

In the first place if we assume (N) (1), by (11) and (15), we have,
for e K{M} and x e

M(x, q) DF(x) AM(x, q) D+’() d

A.K., M,(. q+ q’) D+’() d,

I[D., suphence
Iqq’l0

l]gD., M,(x, q") D,"(x) dx<+ (6)i.e.
0 q’ flo

Next, if we assume (N) (2) and x0, then, by (1), (12), and (15),
we have for e K{M}, x e 9,
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hence

M,(x, q) D(x) B, M,(, q) D+’() d

<= CB,., " M,,(, q + q’) Dq+q’() d,

? C, M,(x, q") Dq"?(x) dx< +. (17)
0lq

In the case of x<0, it is quite similar by using (12)’. Therefore,
by Lemma 1, K{M} is nuclear.

Remark. It will be found with its proof in 1 or 2 what
we stated without proof in 2.
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