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(Comm. by Kunihiko KODAIItA, M. J. A., March 12, 1968)

1. Preliminaries. In his work 1, 3_, M. F. Atiyah
indicated an analytic formula for the index of elliptic differential
operators on compact manifolds. The aim of this note is to describe
this formula more explicitly.

Assume that both X and Y are differentiable vector bundles
with fibre C over a compact oriented Riemannian manifold M
without boundary and that they are provided with hermitian metric
in each fibre. Let P be an elliptic differential operator of order m
from ’(X) to (Y), where ’(X) is the space of C sections of X
provided with the usual topology. We denote by L(X) the space
of L sections of X. Then, considered as a densely defined linear
operator from L(X) to L(Y), P is closable. We denote its minimal
closed extension by the same symbol P. Since P is a densely defined
closed operator, there is its adjoint P* which is a densely defined
closed operator from L(Y) to L(X). It is well known that P has
a finite index Ind (P).. 2. Results. Our first result is the following:

Theorem 1. Let 2 be a positive number. Then we have the
formula
1 Ind (P) lim 2Trace (2 + (P*P))-- Trace (2 + (PP*)-

where k is an arbitrary integer which is larger than n
2m

Proof. The following proof is a variant of the discussion used
in M. F. Atiyah and R. Bott 3.

Let A={0, 21, 2,...} be the set of eigen values of PP* or P*P
with 0<. .... Let F(X) and F(Y) be, respectively, the
eigen-spaces of P*P and PP* corresponding to 2.. It is well known
that F(X),F(Y) are of finite dimension. Let P. denote the
restriction of P to F(X). Then we have the following complexes:

0 [’(X) ::P F(Y) ,0, j-0, 1, 2, 3, ....
Obviously,

Ind (P) dim Uo(X)- dim Fo(Y),
0 dim ker P.-dim coker P,

because P*Plr.(x)=2, PP* [r.()-2’. Hence
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Ind (P)-] 2 (dim F.(X)- dim F(Y))+
2[Trace (.+ (P*P))-- Trace (, / (PP*))-.

Since the right side is independent of , tending to infinity, we
obtain the formula (1).

Now the asymptotic behaviour of Trace(+(P*P))- and
Trace(2+(PP*))- are known. See author’s previous papers [4
and [5J.

Let U be a coordinate patch of M where the bundles X and
Y are trivial. We denote by (x, x,..., x)=x the coordinate of a
point in U. Consider the 1 matrix valued function a(x; , a) of
x in U and of (, a) in R+-{0} defined by

a(x; , a)=aI+e-’(P*P)(e’).
Next determine the formal series b(x; , a)- b__(x; , a) of

matrix valued functions b__ homogeneous of degree -2mk-j in
and a by the generalized Leibniz formula

1 Da(x; a)D:b(x; a)= I2 ,,
where I is the identity matrix. Then we have the asymptotic
formula

Trace (a + (P*P))-

a_+._(2)_. d#(x) trace b_._(x; , 1)d.

Therefore the formula (1) gives the following equalities"

d(x).trace b__(x; , 1)d
p(x)

(3) = d#(x) trace bS._.(x; , 1)d,
p(x)

for j 0, 1, 2, ..., n- 1,
and Ind (P) A(k)- A’(k),

A(k) (2)-" dz(x) trace b_,_,(x; , 1)d,
(4) p(x)

A’(k)-(2) dz(x) trace bk,_.(x; , 1)d,
p(x)

where b are the functions formed from PP* in just the same
process as b are formed from P*P and p(x) is the density of the
volume element d#(x) on M.

It is possible to simplify the formula (4) further.
Theorem 2. Formula (4) holds for k-1.
Proof. Set -(P*P+I)0 with a sufficiently large fixed k0.

From the operator calculas we have, for 2>2 and Re s>0,
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1( 5 ) (z’+ ’)- 1-- r ,/20 (- [])-d

where F is the complex contour from -i i along the imaginary
axis and the branch of ’ is so taken that 1’= 1. Thus, using the
coordinate expression of X and Y, we have the following asymptotic
expansion in (, ) as +. For any smooth function with
compact support in U and for any constant vector v and real linear
function x.=x,+ +x,, of coordinate function x,..., x,

e_.(20,+ ,)_e.v_ I e-’
F 22 s ( )-(e’v)d

(6) i-- i
2=o+ b-o-(x; ’ )vd.

Since
r 20"+ b--(x; ’) is positively homogeneous in (,)

of degree 2mkos-j, Trace(0,+ ,)- has an asymptotic expansion
in , that is,

Trace (20’+ ’)-

1 d(x)p(x) 2o1.d trace b_o_(x; , )d5
M F

(see [43 or [53).
Therefore, if s is large enough,

2" g() g

" 2o
trace b_o_(; )g.

his is analytie in , Ne >0, and

2i p(x) r2+
On the other hand, (6) implies that the n-th term of the expansion
of e-’(2TM + P*P)-e’v is equal to

2il2+<1b_0_(x; , )d.
Thus this is equal to the n-th term calculated from the generalized
Leibniz rule (2) where k is replaced by 1. This and (8) prove
Theorem 2.

As a corollary to the formula (4) we shall give an analytic
proof of

Theorem . ([2). Ind (P)= 0, if the dimension of M is odd.
Proof. From the generalized Leibniz rule (2), the function

b__ is odd in . Therefore the integral

b__(;

, 1)d

anishes.
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