31. On the Representations of $\operatorname{SL}(3, \mathrm{C})$. III

By Masao Tsuchikawa

Mie University
(Comm. by Kinjirô Kunugi, m. J. A., March 12, 1968)
In this part of the works we shall discuss unitary representations of G, including the supplementary series and the degenerate series.

1. It is already seen [1] that there exists the following invariant bilinear form on $\mathscr{D}_{\chi} \times \mathscr{D}_{\chi^{\prime}}$ where $\chi=\left(l_{1}, m_{1} ; \lambda_{2}, \mu_{2}\right)$ and $\chi^{\prime}=\left(l_{1}, m_{1}\right.$; $\left.-l_{1}-\lambda_{2},-m_{1}-\mu_{2}\right)$:

$$
\int \delta^{\left(l_{1}, m_{1}\right)}\left(z_{1}^{\prime}\right) \varphi\left(z_{1}^{\prime} z\right) \psi(z) d z_{1}^{\prime} d z
$$

This form is degenerate, that is, if $\varphi \in \mathcal{E}_{\chi}^{1}$ or $\psi \in \mathcal{E}_{\chi^{\prime}}^{1}$ we have $B(\varphi, \psi)=0$; moreover we obtain the following form on $\mathcal{E}_{x}^{1} \times \mathcal{E}_{\chi^{\prime}}^{1}$,:

$$
\begin{aligned}
B_{1}(\varphi, \psi) & =(-1)^{p+q} p!\left(l_{1}-p-1\right)!q!\left(m_{1}-q-1\right)! \\
\times \int a_{p q}\left(z_{2}, z_{3}\right) b_{r s}\left(z_{2}, z_{3}\right) d z_{2} d z_{3} & \left(l_{1}-p-r-1=0 \text { and } m_{1}-q-s-1=0\right), \\
& =0
\end{aligned} \quad\left(l_{1}-p-r-1 \neq 0 \text { or } m_{1}-q-s-1 \neq 0\right), ~ l
$$

for $\varphi(z)=z_{1}^{(p, q)} a_{p q}\left(z_{2}, z_{3}\right)$ and $\psi(z)=z_{1}^{(r, s)} b_{r s}\left(z_{2}, z_{3}\right)$.
We remark that this form is equivalent to the non-degenerate form on $\mathscr{D}_{\chi^{s_{1}}} / \mathscr{F}_{\chi^{s_{1}}}^{1} \times \mathscr{D}_{\chi^{\prime s_{1}}} / \mathscr{F}_{\chi^{\prime s_{1}}}^{1}$:

$$
\int z_{1}^{\prime\left(l_{1}-1, m_{1}-1\right)} \varphi\left(z^{\prime} z\right) \psi(z) d z_{1}^{\prime} d z
$$

In particular, if $l_{1}=1$ and $m_{1}=1$, the representation $\left\{T^{x}, \mathcal{E}_{x}^{1}\right\}$ is the so-called degenerate representation and bilinear form on $\mathcal{E}_{\chi}^{1} \times \mathcal{E}_{\chi^{\prime}}^{1}$ is clearly given by

$$
\int a\left(z_{2}, z_{3}\right) b\left(z_{2}, z_{3}\right) d z_{2} d z_{3}
$$

2. Now we set $\langle\varphi, \psi\rangle=B(\varphi, \bar{\psi})$ for $\varphi, \psi \in \mathscr{D}_{\chi}$, where $\bar{\psi}$ is the complex conjugate of ψ and $\bar{\psi} \in \mathscr{D}_{\bar{x}}$, then $\langle\cdot, \cdot\rangle$ is an Hermitian form on \mathscr{D}_{χ}. In case it exists and is positive definite, the representation $R(\chi)$ is unitary with respect to this scalar product.
(i) When $\chi \bar{\chi}(\delta)=1$, that is, $\lambda_{1}=\left(n_{1}+\sqrt{-1} \rho_{1}\right) / 2, \mu_{1}=\left(-n_{1}\right.$ $\left.+\sqrt{-1} \rho_{1}\right) / 2, \lambda_{2}=\left(n_{2}+\sqrt{-1} \rho_{2}\right) / 2, \mu_{2}=\left(-n_{2}+\sqrt{-1} \rho_{2}\right) / 2$, where n_{k} are integers and ρ_{k} are real, then $\langle\varphi, \psi\rangle$ has the form $\int \varphi(z) \bar{\psi}(z) d z$ and is positive definite. Such representations are known as those of the principal series.
(ii) When $\chi \bar{\chi}^{s_{1}}(\delta)=1$, that is, $\lambda_{1}=\mu_{1}=\sigma, \lambda_{2}=-\sigma / 2+(n-\sqrt{-1} \rho)$ $/ 2, \mu_{2}=-\sigma / 2+(-n-\sqrt{-1} \rho) / 2$, where n is an integer, σ and ρ are
real, then $\langle\varphi, \psi\rangle$ has the form $\int\left|z_{1}^{\prime}\right|^{-20-2} \varphi\left(z_{1}^{\prime} z\right) \overline{\psi(z)} d z_{1}^{\prime} d z$.
When $\chi \bar{\chi}^{\sigma^{2}}(\delta)=1$, that is, $\lambda_{1}=-\sigma / 2+(-n+\sqrt{-1} \rho) / 2, \mu_{1}=-\sigma / 2$ $+(n+\sqrt{-1} \rho) / 2, \lambda_{2}=\mu_{2}=\sigma$, then $\langle\varphi, \psi\rangle$ has the form

$$
\int\left|z_{2}^{\prime}\right|^{-20-2} \varphi\left(z_{2}^{\prime} z\right) \psi(z) d z_{2}^{\prime} d z
$$

When $\chi \bar{\chi}^{s_{0}(\delta)}=1$, that is, $\lambda_{1}=\sigma / 2+(n-\sqrt{-1} \rho) / 2, \mu_{1}=\sigma / 2+(-n$ $-\sqrt{-1} \rho) / 2, \lambda_{2}=\sigma / 2+(-n+\sqrt{-1} \rho) / 2, \mu_{2}=\sigma / 2+(n+\sqrt{-1} \rho) / 2$, then $\langle\varphi, \psi\rangle$ has the form

$$
\int\left(z_{1}^{\prime} z_{2}^{\prime}-z_{3}^{\prime}\right)^{\left(-\lambda_{1}-1,-\mu_{1}-1\right)} z_{3}^{\prime\left(-\lambda_{2}-1,-\mu_{2}-1\right)} \varphi\left(z^{\prime} z\right) \bar{\psi}(z) d z^{\prime} d z .
$$

These three forms are positive definite if $-1<\sigma<1, \sigma \neq 0$ and corresponding unitary representations are mutually unitarily equivalent and are known as those of the supplementary series.
(iii) Let σ be a positive integer in the case (ii), and let $\lambda_{1}=\mu_{1}$ $=m$, for instance. Then the form

$$
\int \delta^{(m, m)}\left(z_{1}^{\prime}\right) \varphi\left(z_{1}^{\prime} z\right) \psi(z) d z^{\prime} d z
$$

is a positive definite form on $\mathscr{D}_{\chi} / \mathcal{E}_{\mathfrak{x}}^{1}$ and the representation $\left\{T^{x}, \mathscr{D}_{\chi} / \mathcal{E}_{\mathcal{X}}^{1}\right\}$ is equivalent to $R\left(\chi^{\prime}\right)$, where $\lambda_{1}^{\prime}=m, \mu_{1}^{\prime}=-m, \lambda_{2}=-m / 2+(n-\sqrt{-1} \rho) / 2$, $\mu_{2}=m / 2+(-n-\sqrt{-1} \rho) / 2$, which is a representation of the principal series.
(iv) Let $\sigma=-1$ in the case (ii), then the bilinear forms are degenerate and they are positive definite either on $\mathcal{E}_{1,1 ; 2, \lambda_{2}, \mu_{2}}^{1}\left(\lambda_{2}=1 / 2\right.$ $+(n-\sqrt{-1} \rho) / 2, \mu_{2}=1 / 2+(-n-\sqrt{-1} \rho) / 2 \quad$ or \quad on $\quad \mathcal{E}_{\lambda_{1}, \mu_{1}, 1,1}^{2}\left(\lambda_{1}=1 / 2\right.$ $+(-n+\sqrt{-1} \rho) / 2, \mu_{1}=1 / 2+(n+\sqrt{-1} \rho / 2)$. In these forms the degenerate representations are unitary and mutually unitarily equivalent. They are known as those of the degenerate principal series.
(v) When $\chi=(p, q ; q, p), p$, and q being positive integers, the form

$$
\begin{aligned}
& \int \delta^{(p, q)}\left(z_{2}^{\prime}\right) \delta^{(p+q, p+q)}\left(z_{1}^{\prime}\right) \delta^{(q, p)}\left(z_{2}^{\prime \prime}\right) \\
& \quad \times \varphi\left(z_{2}^{\prime} z_{1}^{\prime} z_{2}^{\prime \prime} z\right) \bar{\psi}(z) d z_{1}^{\prime} d z_{2}^{\prime} d z_{2}^{\prime \prime} d z
\end{aligned}
$$

is a positive definite form on the space $\mathscr{D}_{\chi} / \mathcal{A}_{x}$ and the representation $\left\{T^{*}, \mathscr{D}_{\chi} / \mathcal{A}_{\chi}\right\}$ is equivalent to $R\left(\chi^{\prime}\right)$ where $\chi^{\prime}=(p,-p ; q,-q)$. It is a representation of the principal series.

Theorem. The representation $R(\chi)$ is unitary in the following three cases:
(1) $\lambda_{1}=\left(n_{1}+\sqrt{-1} \rho_{1}\right) / 2, \mu_{1}=\left(-n_{1}+\sqrt{-1} \rho_{1}\right) / 2, \lambda_{2}=\left(n_{2}+\sqrt{-1} \rho_{2}\right) / 2$, $\mu_{2}=\left(-n_{2}+\sqrt{ }-1 \rho_{2}\right) / 2$, where n_{k} are integers and ρ_{k} are real (principal series);
(2) $\quad \lambda_{1}=\mu_{1}=\sigma, \quad \lambda_{2}=-\sigma / 2+(n-\sqrt{-1} \rho) / 2, \quad \mu_{2}=-\sigma / 2+(-n$ $-\sqrt{-1} \rho) / 2$ where n is an integer and σ and ρ are real and
$-1<\sigma<1, \sigma \neq 0$ (supplementary series);
(3) $\lambda_{1}=\mu_{1}=-1, \lambda_{2}=1 / 2+(n-\sqrt{-1} \rho) / 2, \mu_{2}=1 / 2+(-n-\sqrt{-1} \rho) / 2$ (degenerate principal series).

Every irreducible unitary representation contained in $R(\chi)$ is unitarily equivalent to that of above type.

Reference

[1] M. Tsuchikawa: On the representations of $S L(3, \boldsymbol{C})$. I. Proc. Japan Acad., 43, 852-855 (1967).

