29. Remarks on Countable Paracompactness

By C. E. AULL

Virginia Polytechnic Institute, Blacksburg, Virginia, U.S.A.

(Comm. by Kinjirô KUNUGI, M.J.A., March 12, 1968)

Introduction. This note consists of 2 parts. 1. An observation that every regular normal space is countably paracompact if and only if every T_4 space is countably paracompact. 2. It is proved that a generalized F_{σ} , α -countably paracompact subset is closed in a T_4 space. α -countably paracompact subsets were introduced in [2].

Dowker's problem. Dowker [5, 221] gave an example of a normal space that was not countably paracompact, and he raised the question as to the existence of T_4 spaces that were not countably paracompact. In that Dowker's example is T_0 and not T_1 , it is not regular. We use a result of M. H. Stone to prove the following theorem.

Theorem 1. Every normal regular topological space is countably paracompact if and only if every T_4 space is countably paracompact.

Proof. Let (X, \mathcal{T}) be a regular normal space. For $x \in X$, let $\langle x \rangle$ be the intersection of all open and closed sets containing [x] as a subset. We define equivalence classes on $X \times X$ by saying that $(x, y) \in R$ if and only if $\langle x \rangle = \langle y \rangle$. Then by Stone's theorem X/R with the quotient topology \mathcal{T}_R is a T_0 space and (X, \mathcal{T}) and $(X/R, \mathcal{T}_R)$ are lattice equivalent and one is normal (regular) then the other is normal (regular). So $(X/R, \mathcal{T}_R)$ is T_4 . Let $\{V_n\}$ be a countable open cover of (X, \mathcal{T}) . Let $\phi(V_n)$ be the image of V_n in $\{X/R, \mathcal{T}_R\}$. $\{\phi(V_n)\}$ is clearly a cover of X/R. Let $(X/R, \mathcal{T}_R)$ be countably paracompact, then $\{\phi(V_n)\}$ has a point finite countable open refinement $\{\phi(W_n)\}$. $\{W_n\}$ is a point finite open refinement of $\{V_n\}$ and (X, \mathcal{T}) is countably metacompact and by a theorem of Dowker [5, 220] is countably paracompact.

 α -countably paracompact subsets.

Definition 1. A subset M of a topological space (X, \mathcal{T}) is α countably paracompact if every countably \mathcal{T} -open cover $\{V_n\}$ has a \mathcal{T} -open refinement (covers X) which is locally finite with respect to all points of X.

In a previous paper [1], it was proved that, in topological spaces such that every point is the intersection of a countable number of closed neighborhoods, α -countably paracompact subsets are closed. We wish to prove a related result, using the concept of a generalized F_{σ} . See Corson and Michael [4].

Theorem 2. A generalized F_{σ} α -countably paracompact subset of a T_4 space (X, \mathcal{T}) is closed.

Proof. Let M be a generalized F_{σ} , α -countably paracompact proper subset of a T_4 space. Let $x \notin M$. By the T_1 property of (X, \mathcal{T}) , there exists an open set V such that $x \notin V$ and $M \subset V$; there exists an F_{σ} set $H = \bigcup F_k$ such that $M \subset H \subset V$ and each F_k is closed. By the normality of (X, \mathcal{T}) there exists a family of open sets $\{G_k\}$ such that $F_k \subset G_k \subset \overline{G}_k \subset V$. By the α -countable paracompactness of M, there is an open locally finite family $\{W_k\}$ covering M such that $W_k \subset G_k$. $M \subset \bigcup \overline{W}_k \subset \sim [x]$. So M is closed.

Corollary 1. A generalized F_{σ} countably compact subset of a T_4 space (X, \mathcal{I}) is closed.

It follows that in a perfectly normal compact T_1 space the countably compact and the compact subsets are identical.

References

- [1] C. E. Aull: A certain class of topological spaces. Prace Matemyczne, 11, 49-53 (1963).
- [2] ——: Paracompact subsets, general topology and its relations to modern analysis and algebra. II. Proceedings of the second prague topological symposium, 45-51 (1966).
- [3] C. E. Aull and W. J. Thron: Separation axioms between T_0 and T_1 . Indag. Math., 24, 26-37 (1962).
- [4] H. H. Corson and E. Michael: Metrizability of certain countable unions. III. Math. J., 8, 351-360 (1964).
- [5] C. H. Dowker: On countably paracompact spaces. Can. Math. J., 3, 219-224 (1951).
- [6] M. H. Stone: Applications of boolean algebras to topology. Mat. Sbornik, N. S., 1, 212-295 (1936).
- [7] W. J. Thron: Lattice equivalence of topological spaces. Duke Math. J., 29, 671-679 (1962).