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(Comm. by Zyoiti SUETUNA, M.J.A., March 12, 1968)

1. Introduction. In [3], Dyer and Lashof have determined
the mod p homology structure of iterated loop spaces by use of
extended p-th power operations, where p always denotes a prime.
This operation is a generalization of H-squaring (for p=2) defined
by Araki-Kudo [2], and operates on mod » homology group of Hj-
spaces X, especially iterated loop spaces. Let Q\": H.(X; Z,)
—H,,.(X; Z,) be Dyer-Lashof’s extended powers. For odd p, we
denote operations Qf,: H.(X; Z,)—>H,1:;,-(X; Z,),5=0,1, -+, by
Qlpm=(— 1) m ) Qi) _,, oy, @ € H(X; Z,), m= (p—1)/2, and
for p=2, Qh: H.(X; Z,)—H,.{(X; Z,) by Qhr=Q% .

The operation @i, has the following properties: 1. Qf, is a
homomorphism; 2. For odd p, Qi,x=0 if deg x>2j and Qi,x=ux"
if deg x=2j, and for p=2, Qi,x=0 if dega>j and Qix=a if
deg x=7; 3. Qi@ Y)=411-,Q0 % QlnY; 4. Qfp commutes with the
suspension homomorphism o assoctated with the fibering of the
contractible total space, 0Qf, =Qi,0.

Our purpose is to determine the relation between Qf,, and the
Steenrod reduced power operations p" (squaring operations Sq" for
p=2). To state the results, we denote by p% the dual operation
of p~, i.e., defined by

o, yp=<a, p"yy for e H(X; Z,), ye H*(X; Z,).

Let (Z) be the binomial coefficient with the following conven-

sions: (Z):O for a or b<0 and (Z):l for b=0,a>0. 4 denotes

the homology Bockstein operation. Then we have
Main theorem. For odd p,

n ()n+s n+i -1 8414 i
i@ =S P Dangtet,
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Applying the results of [3], the reduced power operations in
QK)=02S*K and 2"*S*+' ¢>0, are computable by the theorem.

I wish to thank Professor H. Toda for many available suggestions.

2. Preliminaries. Let 3, denotes the symmetric group of p
letters and © be the cyclic subgroup of order p generated by a
cyclic permutation T. J*>], denotes the n-th join of ¥, with itself.
Briefly, an Hp-space is an associative H-space with a map 65:
J~3,x X»—X such that (1) Y, -equivariant, (2) normalized, where
XP=Xx --- x X, p-times (see [3]). Let W be the usual acyclic
m-free complex with a single 7-generator ¢; for each dimension . (W
is realized geometrically by the “infinite dimensional sphere”). J=7 is
naturally included in J=¥, and C,(J>7) is also an acyclic 7-free chain
complex. So, we can identify J~r with W, and if X is an H}-space
then #7 induces a homomorphism (see [3])

(00 H (WX X Z,)— H,(X; Z,).

Theorem 1, (Dyer-Lashof), Let x,,%,, --- be a Z,basis of
homogeneous elements, finite for each dimenion, of H.(X; Z,).
Then the homology classes represented by the following cycles form
a Z,basis of H (Wx . X" Z,);

®.2% 5=1,2, 4,120, 22=2;® +++ ®u; (p-times),

6@ (2, ® -+ ®®;), J,#J. for some s,t,
where (J,, +++,J,) runs through each representative of the classes
obtained by cyclic permutations of the indices.

Now, let X be an H;-space and xe H,(X; Z,). Then the ex-
tended power operation Q{* is defined by

Q" (%)= () (6:® 7).

By this definition the proof of the main theorem can be reduced
to the computation of p%-operations in H, (W x ,.X?; Z,). Next, we
sketch the definition of the Streenrod reduced powers (for details,
see [4]). As is seen in [4] we may assume that X is a finite
regular cell complex. Let u e H(X; Z,), and let P(u) be the external
reduced p power [4]. 7 operates on X trivially, and on Wx X and
on Wx X* by a diagonal action, then the diagonal map d: Wx X
—Wx X? is m-equivariant and induces a map d: Wx X— W x . X?,
The projection: Wx ,X?»— W/r makes H*(Wx ,X*; Z,) an H*(W/rx;
Z,)-module. Similarly, H*(Wx .X; Z,)=H*(W/r x X; Z,) is also an
H*(W/r; Z,)-module, and d* is an H*(W/r; Z,)-homomorphism, Let
w; be the generator of H(W/n; Z,), dual to the homology class
represented by e;. B denotes the cohomology Bockstein operation.
Then writing v(q)=(m|)~4(—1)"¢+2/2 we can define the Steenrod
reduced powers for u e HY(X; Z,) by, for p>2,

v(g)d* P(w) :$( — 1YW sy (p—y X O°U +2( — 1) gy (o1 X BO"U
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and for p=2, a*P(u)=>w,_; X Sq*u.

Theorem 2. Let w,, u,, -+ be a Z,-basis of H*(X; Z,) dual to
Xy, Xy, ++ Of theorem 1. Then we can choose elements z,,%,, -+« in
H*(Wx .X?; Z,), which are a Z,-basis of ker d*, such that w,xPuj,
1>0,5>1, and 2, k=1 form a Z,-basis of H*(Wx,,X”; Z,) and
w; X Pu; is dual to e;®.x? for all 1, .

Proof of Theorem 1, 2. It is known [3], [4] that there are
isomorphisms H (W x .X?; Z,)=H (W®.H . (X"; Z,)), H*(W x . X"; Z,)
=H*Hom (WRH(X"; Z,), Z,)). The basis x,, ®,, --+ gives a direct
sum splitting of H . (X; Z,), i.e.,

H(X; Z,)=S14;, A;=Z,{v;} and H*(X; Z,)=} A}, A} =Z,{u;}.
J J

So, we have the following decomposition as 7-modules
H, (X7 Z,,):]Z A24+3TA;® - ®A4;,

where A2=A;® --- ®A; and the second summation runs over j,, ---, 7,
with j,#7, for some s, t. It is easily checked that 7 operates trivially
on the first term and freely on the second term, and there is a
Z,module B such that the second term is isomorphic to Z,(7)®B,
where Z,(x) denotes the groupring of = over Z,. Therefore we have

H (WX, X% Z)=S\H (W®.A?) + H(W®.Z,(T)QB),
H*(WX X" Z)=S\H*(W®.A%)+ H (WQ.Z,(7)®B).

H(W®.A?) is generated by ¢;® .. Since H (W®.Z,(n)=Z,, H (W
®.Z,(T)®B)=B. This proves Theorem 1, Next consider the coho-
mology group. It is proved in Chapter VIII of [4] that H{(W®,.A?)
= H{W/r; Z,)®(A})" is generated by w; X Pu; and that H*(W®,.Z,(7)
®B)cker d*. Now we shall prove that H*(W®.Z,(n)® B)=ker d*.
Let z2=>a,w;, X Pu;,, a, Z,, be a homogeneous element such that
d*z=0. That is, for odd p, 0=>Na,w; C(—1) W oyp—uOU;,
+20(—=1)'w sty (p-1) 1B 0'W;,) Where q,=deg u;,. Consider an element
u;, of the lowest degree, then the right side of the above equality
has a leading term a,w;,+(_1q, X %;,. Thus a,=0 for this %, and so
on. The case p=2 is similar. This shows the above assertion, and
Theorem 2 is proved.
3. Computations. Hereafter p denotes an odd prime unless
otherwise stated, and m=(p—1)/2,
Lemma (Streenrod). Let u be a g-dimensional cohomology class.
Then for amy positive integer k,l, q, the following relations hold:

A

_2( 1)z+z+mq<?f%(f] 2}:1 %>‘0 ~mq+k—i‘0iu’
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SY =y eemen(@-20m = D)gumereigoiy

mqg—1l+1
— 1)i+i+t (q 2i)m k—mg-+1—i pyi
2( ) (fmq k+z>’8‘0 o
1)i+t (@—20)m—1\ k—mgsi—ig i .
+ (-1 L Jot-rari-igotu

The proof was given in Chapter VIII of [4].

Theorem 3. p"Pu= Z<(qn__2%)m)wz(n piro—0 P(0)

— S D PBOW)+2,
T\ n—pi—1
where we H(X; Z,), zc ker d*, and p(q) denotes (m|)~'(—1)"

If zeker d* then w,xzekerd* for any r>0 since d* is an
H*(W/r; Z,)-map. Therefore an easy computation shows

Corollary. 1Y "(w, X Pu)= Z([S/zjz(qp% 2’&)m>ws+2(n_m)(p_n

S GEOETOEON G ) IO

X P(Bp'u)+2',
where we HY(X; Z,), 2’ e kerd*, e(s)=1 if s is even and &(8)=0 if s
18 odd, and for a real x [x] denotes the Gaussian symbol.
Proof of Theorem 3. Recall that Bw,=w,, w,,=(w,)", and

olw,= ([n/ 2])w,,+2,~(,,_1). By the definition of the reduced power
J
and by the Cartan formula
" (W(q)d* Pu) = ;(— 1)i<(q _.?/L)m>w(q—2i+2j)(p—-l) X " p'u
+ 2( - 1)‘(((1 B 2’;)7” N 1>w(q—-2i+2a') (p—1)—1 X P"_jﬁpi%.

Let l=mq+i—3j and s=n—mq-+1l—1, then by the lemma we have
0@ Pu) = S = 1) Wiy g S — 1)L 2™ ) gromasiipiy

mq+i—1
DY CHVLL SN Y € 1)i+n+mv+l((qmq21)ﬁ ermerigp
g G 3 G Ve (e A
B A A

S G e N 3 S L G

mqg—mn-+1
Since (z):(aib)’
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= sz(n—-pﬂ (p—uZ( - 1)3((‘1 - 22.’”)W<q+wp_u_zs> (-0 0° 0%

+2w2(n m)(p—nz( 1) ((q 2%)m>w(q+m(p—n._za)<p—1)—1,3.0 o'

n—pi
= 2 Wsn—pi) (p—1)—p 2 — 1)’(((1 - 2@)?1% B 1>w(q+2i(p—1)+1—2s) (-0 0°BOU.
7 3 n—pi—1
If a and b are odd, w,x w,=0, thus

0D Py =501y 4 20 g + 230~ 1) Plp'w)

=S ipenoo( G2 e+ 20— 1)+ D PGB

Since v(g)*=1 (mod p), we have y(g+2i(p—1))/v(¢)=1 (mod p) and
v(p+2i(p—1)+1)/v(g) = (m])~(—=1)"(= (g)) (mod p). This completes
the proof.

Proof of the main theorem. Let x,,, --- be a canonical
basis of H,(X; Z,),i.e., homogeneous and if 4x;0 then 4x; is also
a basic element. Denote by wu,, %,, --- the dual cohomology basis.
We represent 0% in matrix forms with respect to this basis, i.e.,
0%, =21, ;(n);, @i, 4(n) € Z,, and by the duality ©o"u;=3)a,;(n)us.
Since d*P is a homomorphism, we have P(o0"u;)—>)a;,;(n)Pu, € ker d*
and P(Bp"u;)—>\ax,;(n)P(Bu,) € ker d*. Therefore by Theorem 3,

or(w, x Puy = 3y L2 O 2“m)ws+2(,,_,m(p_l,zak,ja)Puk

— ey BRI 2IM= Dy b0 S0, (P (B 2.

n—pi—1
Consider the coefficient of w,x Pw, in p"(w,x Pu;).

Case 1. u,¢Im B, then the coefficient is

([8/2] +(g5— 27’)m)a i), where ¢q;=degu;.
n—pt
By the duality (Theorem 2), writing ¢=t—2n(p—1),
O Curanoy @st) = Y LI @2 g, iy, @7,
1,9 n—mpr

By the equality of the degrees, ¢,—q;=2i(p—1) and s=c+2pi(p—1),
[s/2]+(q;—2¢)ym=[s/2]+ (g, —2ip)m={[c/2] + mgq,. Therefore we
have

(0*(60+2n(p )®1rx§c,) 2([0/2] +1;{Lkm> k,j(i)(ec+2i(p—1)®ﬁxg)°

Acting (8,), on the both sides and using that Q. is a homomorphism,
we have
(1) RULRSENES S (L ) LR

Case 2. u,=/pu,, then the coefficient is
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(PRI @ 20Ma, ()~ g pete)(P 12 F O 2m = D)g, o,
n—pi n—pi—1
Similarly to Case 1,

p*(er+2n(p—1) ®7rx£) 2([8/2] -’}:(qap’l, 21/)m) k,a(’b)(ea@nxg)

~Sge(e)(WRF @M g, (i)e, @,
n—pi—1
The first summation can be computed as above. Consider the second
one, where pg,+c=pq;+s’,q,—¢q;=2i(p—1)+1. So, s§'=c+p
+2pi(p — 1), [s'/2] + (¢; — 20)m — 1 = [(c + 1)/2] + (gxm — 1) and ¥(g;)
=v(q,+,) (mod p). &(s’)=e(c+1) since s’ and ¢ have an opposite
parity. Therefore
0%(€ot2np—1) @ 22}) = 123([0/2] + %km>ak,j(’5)(ec+zip(p—n ®x%%)

~ g+ Dsto+ (KT DRI o, (et @100

Remark that x,=4x,. Then we have

(2) PiQo?@zn(p—nwk 2.2([0/2]_—;;1.,‘7)@) g—)zip(p—upfk(xk)

~ i+ Dete+ (MO T B MG Ng0 0 A0,
If u,¢ Im B, then 42,=0. Therefore the formula (1) and (2) coincide,
and we have in general

n 2 ( T
p*Qfxg-)zn(p—l)x = ;( [cﬁlb izgm)Qt\:g-)Mp(p—l)p*x

—p(g+1e(e+ 1)2([(0 +,)B{2131/t%m - 1) eDp+2inp—1) 0% 42,
where ¢ € H(X; Z,). Then the main theorem is an easy restatement
of the above formula. For the case p=2, the proof is similar and
ommited.
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