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25. Cohomology Operations in Iterated Loop Spaces

By Goro :NISHIDA
Department of Mathematics, Kyoto University, Kyoto

(Comm. by Zyoiti SUETUNA, M. J. A., March 12, 1968)

1. Introduction. In E3, Dyer and Lashof have determined
the mod p homology structure of iterated loop spaces by use of
extended p-th power operations, where p always denotes a prime.
This operation is a generalization of H-squaring (for p-2) defined
by Araki-Kudo [2, and operates on mod p homology group of H’-
spaces X, especially iterated loop spaces. Let 0()" H(X; Z)
--H.+(X; Z) be Dyer-Lashof’s extended powers. For odd p, we
denote operations Q{)" H(X; Z)--.H+.(_)(X; Z), j=0, 1, ..., by
Q)x-(-1)+(+)/(m!)Q() H(X; Z) m(_,)(_)x x e (p- 1)/2 and
for p=2 Q)" H(X; Z)H+(X; Z) by Q)x-O() x

The operation Q) has the following properties: 1. Q)is a
homomorphism; 2. For odd p, Q)x-O if deg x2j and Q)x-x
if deg x 2j and for p 2, Q)x O if degx>j and Q)x x if
deg x-j; . Q)(x.y)-+=Q()x.Q)y; 4. Q) commutes with the
suspension homomorphism a associated with the fibering of the
contractible total space,

Our purpose is to determine the relation between Q) and the
Steenrod reduced power operations p (squaring operations Sq for
p-2). To state the results, we denote by p the dual operation
of p’, i.e., defined by

px, y}-x, p"y} for x e H.(X; Z), y e H*(X; Z).

(a)be the binomial coefficient with theLet
b

following convert-

sions. ( a ) o for a or b < O and ( a ) l for b O a2
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the homology Bockstein operation. Then we have
Main theorem. For odd p,
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Applying the results of E3], the reduced power operations in
Q(K)=9’SK and tgS+, e>0, are computable by the theorem.

I wish to thank Professor H. Toda for many available suggestions.
2. Preliminaries. Let denotes the symmetric group of p

letters and be the cyclic subgroup of order p generated by a
cyclic permutation T. J’, denotes the n-th join of X with itself.
Briefly, an HT-space is an associative H-space with a map 07:
JXX--X such that (1) X-equivariant, (2) normalized, where
X-X X, p-times (see [3). Let W be the usual acyclic
7c-free complex with a single -generator e for each dimension i. (W
is realized geometrically by the "infinite dimensional sphere"). J is
naturally included in JX and C.(J7) is also an acyclic -free chain
complex. So, we can identify J7 with W, and if X is an H-space
then 0" induces a homomorphism (see [3)

(0)." H.(Wx X; Z) H.(X; Z).
Theorem 1. (Dyer-Lashof). Let x,x, be a Z-basis of

homogeneous elements, finite for each dimenion, of H.(X; Z).
Then the homology classes represented by the following cycles form
a Z-basis of H,(WxX; Z);

e(R) x. j-1 2 i:>0, x-x(R) (R)x (p-times)39

where (j, ...,j) runs through each representative of the casses
obtained by cyclic permutations of the indices.

Now, let X be an H-space and x e H.(X; Z). Then the ex-
tended power operation Q) is defined by

(x)=
By this definition the proof of the main theorem can be reduced

to the computation of p-operations in H.(WX; Z). Next, we
sketch the definition of the Streenrod reduced powers (for details,
see [4). As is seen in [4 we may assume that X is a finite
regular cell complex. Let u H(X; Z), and let P(u) be the external
reduced p power [4. operates on X trivially, and on WX and
on WX by a diagonal action, then the diagonal map d: WX
WX is 7-equivariant and induces a map d: W X--*WX.

The projection: WX--, W/ makes H*(WX; Z) an H*( W/;
Z)-module. Similarly, H*(W X; Z)-H*(W/ X; Z) is also an
H*(W/7; Z)-module, and d* is an H*(W/; Z)-homomorphism. Let
w be the generator of H(W/7; Z), dual to the homology class
represented by e. f denotes the cohomology Bockstein operation.
Then writing 19(q)--(m!)-q(--1)(q+q)/2, we can define the Steenrod
reduced powers for u Hq(X; Z) by, for p>2,

(q)d*P(u)-(- 1)w(q_) (_) pu+,(- 1)w(q_.) (_)_
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and for p- 2, d*P(u)

_
,w_ Squ.

Theorem 2. Let u, u.,.., be a Z-basis of H*(X; Z) dual to
x, x,.., of theorem 1. Then we can choose elements z, z.,.., in
H*(WX; Z), which are a Z-basis of ker d*, such that w Pu,
iO,jl, and z,kl form a Z-basis of H*(WX;Z) and
w Pu is dual to e x for all i, j

Proof of Theorem 1, 2. It is known 3, 4 that there are
isomorphisms H,(W X;Z)H,(W@H,(X; Z)), H*(W X; Z)
H*(Hom.(W@H,(X; Z), Z)). The basis x,, x, gives a direct
sum splitting of H,(X; Z), i.e.,

H,(X; Z)-A, AZ{x} and H*(X; Z)- A, AZ{u}.
So, we have the following decomposition as -modules

H,(X; Z) A+ A, @A,
where A-A@ Aand the second summation runs over
with j, cj for some s, t. It is easily checked that operates trivially
on the first term and freely on the second term, and there is a

Z-module B such that the second term is isomorphic to Z()B,
where Z(u) denotes the groupring of over Z. Therefore we have

H,(WX; Z)H,(WA)+H,(WZ(u)@B),

H*(Wx .X’; Z)H*(W@A)+H*(W@Z(z)@B).

H(W@ ) is generated by e@x. Since H,(W@Z(z)) Z H,(W
@Z(z)@B)B. This proves Theorem 1. Next consider the coho-
mology group. It is proved in Chapter VIII of 4 that H(
H(W/=; Z)(A) is generated by w Pu and that H*( W@Z(z)
@B)kerd*. Now we shall prove that H*(W@Z()B)-ker d*.
Let z-aw Pu, a Z, be a homogeneous element such that
d*z-O. That is, for odd p, O=aw((-1)w(_)
+(-1)w(q_)(_)_p u) where q-deg u. Consider an element

u of the lowest degree, then the right side of the above equality
has a leading term aWik+(_)q Ui. Thus a-0 for this k, and so
on. The case p-2 is similar. This shows the above assertion, and
Theorem 2 is proved.. Computations. Hereafter p denotes an odd prime unless
otherwise stated, and m-(p-1)/2,

Lemma (Streenrod). Let u be a q-dimensional cohomology class.
Then for any positive integer k, l, q, the following velations hold:

(mq- + i)P( 1)+(q-2i)m--q+-pu

mq- k + i
p -pu,
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mq--l+i

(-1)’++(mq(q-

mq- k + i
p-q+-pu.

The proof was given in Chapter VIII of [4.

Theorem . pPu- w(_)(_)P(pu)

where u Hq(X; Z), z
If zekerd* then wzekerd* for any r0 since d* is an

H*(W/; Z)-map. Therefore an easy computation shows

Corollary.
n-p

n-pi-1

where u e Hq(X; Z), z’e ker d*, e(s)= 1 if s is even and e(s)=0 if s
is odd, and for a real x x denotes the Gaussian symbol.

Proof of Theorem 3. Recall that w w, w (w), and

pw,-(n/23) By the definition of the reducedn+2] (p--l), power

and by the Caftan formula

i,j

+ (-1)’((q- 2i)m-1)W(q_2+)(._)_
Let 1-mq+i-] and s-n-mq+l-i, then by the lemma we have

p(u(q)g*Pu) (-
kmq+i-l]

k mq+i-1

+(-)"+.+w )
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If a and b are odd, ww=0, thus

p(w(q)d*Pu) Zw(,_)(_)((q 2i))y(q + 2i(p 1))d*

W2(_pi (p--)--p

Since ;(q) 1 (mod p), we have (q + 2i(p- 1))/’(q) 1 (rood p) and
w(p+2i(p-1)+l)/(q)(m!)-(-1)q(=p(q)) (modp). This completes
the proof.

Proof o the main theorem. Let x,x, be a canonical
basis of H.(X; Z), i.e., homogeneous and if Ax0 then Ax is also
a basic element. Denote by u, u,.., the dual cohomology basis.
We represent p in matrix forms with respect to this basis, i.e.,
px a,(n)x), a,(n) e Z, and by the duality p’u=a,(n)u.
Since d*P is a homomorphism, we have P(pu)-a,(n)Pu e ker d*
and P(p’u)-a,(n)P(u) e ker d*. Therefore by Theorem 3,

p’(w, Pu,) ([s/2 +(q-2i)m)w,+(,_,)(,_)a,,(i)Pun-p

Consider the coefficient of w Pu in p(w, Pu).
Case 1, u e Im 2, then the coefficient is

(;/2 +(q-2i)m)a,(i) where q=deg.

By the duality (Theorem 2), writing c=t-2n(p-1),

,( +_x):(s/2, +(q 2i)
],

By the equality of the degrees, q-q=2i(p-1) and s=c+2pi(p-1),
s/2 + (q- 2i)m s/2 + (q-2ip)m= c/2 +mq. Therefore we
have

n-pi /a,;(i)(e+(_)@x;).
Acting (0). on the both sides and using that () is a homomorphism
we have

fEc/2] +q,

Case 2. u=Su, then the coefficient is
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([s/2 + (q,- 2i)m)a (i)- [(q,)e(s’)([s’/2 + (q’ 2i)m- 1)a,,(i)n-p n-pi 1
Similarly to Case 1,

p(e+.(_)(R)x) (Es/2 + (q- 2i)m)a,(i)(en-p,

(q)s(s,)([s’/2 + (q- 2i)m- 1)a,(i)(e,,@x).n-pi-1
The first summation can be computed as above. Consider the second
one, where pq + c-pq + s’, q q 2i(p- 1) + 1. So, s’ c +p
+ 2pi(p- 1), s’/2 + (q- 2i)m- 1 (c + 1)/2 + (qm- 1) and (q)
(q+) (modp). e(s’)-e(c+l) since s’ and c have an opposite
parity. Therefore

n-pi

n(q + + + +, n-pi- 1
Remark that x=2x. Then we have

1)([(c+ 1)/2] +mq-1)e(c
k n-p,-i

If u e Im 2, then 2x =0. Therefore the formula (1) and (2) coincide,
and we have in general

,+.(_)x-
n-pi )+(_)p,x

(q+ l)s(e + l)((e+ l)/ +qm-1)
where e H(X; Z,). hen the main theorem is an easy restatement
of the aboe formula. Pot the ease -2, the roof is similar and
ommited.
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