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49. Calculus in Ranked Vector Spaces. II

By Masae YAMAGUCHI
Department of Mathematics, University of Hokkaido

(Comm. by Kinjir8 KVNtI(I, M.Z..., April 12, 1968)

1.6. Ranked vector space. In what follows we denote by the
space of all real numbers with the usual topology.

(1.6.1) Definition. A space E which is satisfying the following
Conditions (I), (II) is called a ranked vector space.

(1.6.2) (I) E is a vector space over the real or complex num-
bers and there is a countably family !0(0), !(0), ,.(0), ..., n(0),
where each 3(0) consists of subsets of E. Let !(0)= U !8(0), then it
satisfies the following conditions"

(A) Every V belonging to (0) contains zero;
(B) For any U, V e 8(0), there exists a W e 3(0) such that

WUfqV;
(a) For any U e !8(0), and for an integer n (0gnw0), there ex-

ists an integer m and a V e 3(0) such that
m>_n, Ve!8(0), and VcU;

(b) E e !80(0).
With each element x e E there is associated a non-empty set 3(x) as
follows"

3(x)= {x + v; v e 3(0)}.
Every element U--x/ V e (x) is called a neighborhood of a point x.
Further, there is a countably system (3n) defined by

3n--(X t_ V; x e E, V e n(0)},
for n-0, 1, 2, ....

(1.6.3) (II) In E the following axioms hold [1]"
(1) There exists a non-negative function q(2,/2), defined for >_0

and /2>_0, such that lim (2, /2)=oo, and the following holds" if
U e (0), V e 3(0), W e 3(0), n <_ (1, m), and U+ V W, then there
is an integer n*>_(1, m), and a neighborhood W* e 3.(0), such that

U+V W* W.
(2) There exists a non-negative function +(2, [2) defined for 2>_0

and ft >_ 1 such that lim +(, [2)= oo, for each fixed/2, and the following

holds" let a be a scalar with a I>_ 1. If U e 3m(O), V e 3n(O), aUK V,
and n <_ +(m, a I), then there is an integer n* >_ +(m, al) and a
V e B.(0) such that

aU V* V.
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(3) Let U e 3(0) and x e U. Then for any integer n, there is an
integer m>_n, a neighborhood V e 3(0) and some positive p such
that

pxe VU.
Moreover, we assume that every V in ?5(0) is circled (i.e., for

any x e V and for any a with ]a] <_1, ax e V).
Then it is clear that E is a ranked space with the indicator Wo.
If a space E satisfies the following condition"
(1.6.4) For any U e (0) and V e 3(0), there exists an integer

n such that
n>_ max (1, m) and U V e 3(0),

then we can replace Axioms (1), (2), (3) of (1.6.3) by the following

axioms"
(1.6.5) (1’) There exists a function (2, /2) such as in (1) of

(1.6.3), and the following holds; for any U e (0) and for V e 3(0),
there is an integer n and a neighborhood W such that

n>_(/,m), Wean(O), and U+ V W.
(2’) There exists a function (, [2) such as in (2)of (1.6.3),

the following holds for any U e (0) and for a with a] _1, there
is an integer n and a neighborhood V such that

n_>(m,}a}), Ve(0), and aUV.
(3’) For any integer n and for any x in E, there is an integer

m, a neighborhood V and a positive number p such that
m>_n, V e 3(O), and px e V.

(1.6.6) Example. Let E be a normed vector space, then it is a

ranked vector space.
In fact, we define {3(0)} as follows"

(0)={V(0)}, for n=0, 1, 2,

where V(0)- II 11 < or -1, ., , o, and V,(0)-E. Then

we have
(1.6.7) _>n V,(0)c V(0).

Indeed, let x V(O), then Ilxll<--1 Since m>_,

.’. IIXlI< 1-- .’. X e Yn(O).
n

Let

for any x e E
(o)={Vo(O), v(o), v(o),..., Vn(0),...},

and
(x)={x+ V(0) n--0, 1, 2, ....}

={x+ v(o) x eE}, for n=O, 1, 2, ....
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It is clear that Condition (1.6.2) holds.
Let us show that Condition (1.6.3) holds. Since in this case by

(1.6.7) Condition (1.6.4) holds, it suffices to show that Axioms (1’),
(2’), (3’) hold.

Let (2,/a)-min(I-l I])’ If U e 3(0) and V e (0), i.e.,

1 1U= V(0) and V- V(0), then for any x e U, y e V, I x] <, ] y]] <’m
Here we my assume that lm. Then since 4(/, m)= ], if we put

n-[ thenn<m 1>2
k2J -- n -m...

m
x + y e V(O). .’. U+V V(O).

where n(/, m). Therefore Axiom (1’) holds.

Let(2, Z)=]-. For any Ue (0)and for a scalar a with

11, let x e U, Chen we have ]ax[-a[ []x[[ [a[.
Since (m,.a,)=[] if we put n- then

". ... ax e
n

.’. aU V(O),
where n(m, a). Therefore Axiom (2’) holds.

Let x e E and n arbitrary non-negative integer. Put m=n+l,
then there exists a positive number p such that

1 px e V(O) e (0).
m

Thus a normed vector space E is a ranked vector space.
In a ranked vector space E the following proposition holds"
(1.6.8) Proposition. If E is a ranked vector space and {x} is a

sequence in E, then {lim x} x is equivalent to {lim (Xn--X)} O.
Proof. It follows from the definition of {lim x} x that there

exists a sequence {Un(x)} of neighborhoods of x and a sequence {a} of
integers such that

Uo(x) U(x) U(x) U(x) 0 n< Wo,

supa=w0, U(x) x, and U(x) e,
or n-0, 1, 2, ....
Since by (1.6.2) Un(X) can be written in the form x + V(0), V(0) e,
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using U(x) x, we have V(0) Xn- X, where V(0) e 9,. Therefore
{lim (x- x)} e 0.

It is obvious that the converse assertion holds.
Since the following Propositions (1.6.9), (1.6.10), (1.6.11) are

proved in the paper of M. Washihara [2], we shall omit.
(1.6.9) Proposition. Let E be a ranked vector space, {x}, {Yn}

sequences in E, and x, y e E. If {lim x} x and {lim y} y, then
{lim (x + y)} x + y.

This means the continuity of addition.
(1.6.10) Proposition. Let E be a ranked vector space, {x} a

sequence in E and x e E. If {lira x} x, then, for any e ,
{lim 2Xn} 2X.

(1.6.11) Proposition. Let E be a ranked vector space and
x e E. If limf=fin, then

{lim nX} X.
(1.6.12) Proposition. Let E be a ranked vector space, {Xn} a

sequence in E and x e E. If {lira x} x in E and lim 2n 2 in Yt, then
{lira 2nXn} 2x.

Proof. (a) We shall consider the following special case"

-0, x-0.
Then it follows from the definition of {lim Xn} 0 that there exists a
sequence {Un(0)} of neighborhoods of zero and a sequence (a} of inte-
gers such that

U0(0) U(0) U.(0) ... Un(O) ", 0

__
n Wo,

sup a--w0, Un(O) x, and U(0) e,
for n=0,1,2,....
Since lira 2=0, there is an positive integer N such that

It follows, using the assumption that each Un(O) is circled, that
U(0) x, U/I(0) /x/,

.’. {limf/nX/}0.
By (1.2.3), we have

{lim 2x} 0.
(b) Let {limxn}X and limfn-2, i.e., {lim(Xn-X)}0 and

lim(2-2)=0. From (a), we have
{lim (fn 2)(Xn X)} 0.

.’. {lim (fnX-- 2Xn-- 2nX + 2X)} e 0.
By (1.6.9), (1.6.10), (1.6.11) the following hold,

{lim (x+x-x)} x+x-x x.
". {lira 2nX} 2X.

(1.6.13) Proposition. Let E, E., ..., E be a family of ranked
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vector spaces and let {Zn}--"
be sequences in the direct product E, and z=(x, x,..., x),
-(x, x, ..., x) e E. If (lim z} z and (lim z’} z’, then

(lim (z + z)} e z + z’.
Proof. By (1.5.1), {lira z} z and (lim z} e z’ are equivalent to

the following’
{lim x} 9 x, {lim Xn2} X2, "*’, {lim x} x,

and
{lira x’} x’, {lira x’} x’, {lira x} e x.

Since E, E, ..., E are ranked vector spaces, by (1.6.9) we have
{lira (Xn+ x’)} x+ x, {lira (Xn+ X’,.)} e X+ X’
{lira (x+ x)} X+ x.

". {lira (z + z’)} z + z’.
(1.6.14) Proposition. Let E, E, ., E be a family of ranked

vector spaces and let {z}={(x, x, ..., x)} be a sequence in the
direct product E, and z (x, x., ., x) e E. If {lira z} z, then,
for any 2 e

{lim 2z} 2z.
Proof. {lim Zn} Z is equivalent to the following"

{lim Xn} x, {lim x.} e x,., ..., {lim Xn} x.
Since E, E., ..., E are ranked vector spaces, by (1.6.10) we have
for any 2 e Y,

{lira 2x} e 2x, {lim 2x.} e 2x, ..., {lim 2x} 2x.
". {lira 2z} e 2z.

(.1.6.15) Proposition. Let z=(x, x, ..., x) be an arbitrary
element of the direct product E of the ranked spaces E, E,...,
E. If lim 2n-- in JR, then

{lim 2z} 2z.
Proof. If lim 2=2 in !)t, by (1.6.11), we get

{lim x} 2x, {lim x} x, ..., {lim nX} x.
.’. {lira 2nZ} 2z.

(1.6.16) Proposition. Let E, E., ..., E,, be a family of ranked
vector spaces and let {z}-{(x, x., ..., x) a sequence of the direct
product E and z (x, x., ., x) e E. If {lira z} z in E and
lira 2- 2 in 9t, then

{lim 2z} 2z.
Proof. By (1.5.1) {lim Zn} Z is equivalent to the following’

{lim x} x, {lim Xn} x, ..., {lim x} x.
I follows from (1.6.12), using the assumption lim 2= 2, tha

{lim 2x} 2x, {lim 2x} 2x, ..., {lim 2x} 2x.
". {lira 2nZn} 2Z.

In the direct product E of the ranked vector spaces E, E, ..,
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E (1.6.13) means the continuity of addition, and (1.6.14), (1.6.15),
(1.6.16) mean the continuity of the scalar multiplication. Thus we
may consider the direct product E of the ranked spaces E, E, .,
E as a ranked vector space.

1.7. Quasi.bounded sequence. (1.7.1) Definition. Let {x} be
a sequence in a ranked vector space E. Then a sequence {x} is called
a quasi-bounded sequence in E if and only if, for any sequence
in with ,u-0,

{lim/x} 0.
(1.7.2) Proposition. Let {Xn} be a sequence in a ranked vector

space E. If {lim x} x in E, then {x} is a quasi-bounded sequence.
Proof. Let {/} be an arbitrary sequence in with/-*0, then

it follows from (1.6.12), using the assumption that {lim x} x, that
{lim [.nXn} O" X"--O.

Hence {Xn} is a quasi-bounded sequence.
(1.7.3) In particular, if x=x for n-0, 1, 2, ..., then by (1.2.4)

{lim Xn} X. Therefore it is also a quasi-bounded sequence.
One easily verifies the following proposition"
(1.7.4) Proposition. Let {xn} be a quasi-bounded sequence in a

ranked vector space E. If {xn} is an arbitrary subsequence of {xn},
then it is also a quasi-bounded sequence.

(1.7.5) Proposition. Let {xn}, {yn} be two quasi-bounded se-
quences in a ranked vector space E, and , , arbitrary numbers of. Then {axe}, and {flx+ ’Yn} are also quasi-bounded sequences.

Proof. It is suffices to show that {flXn + ’Yn} is a quasi-bounded
sequence. Let {Zn} be a sequence in with/-*0.

[-n(Xn - Yn) ([-n)Xn - (n)Yn.By assumption we have
{lim (fl/)x} e 0, and {lim(yp)y} e 0.

.’. {lira/n(Xn + Yn)} 0.
Thus if {Xn}, {Yn} are quasi-bounded sequences, then, ior any

are also quasi-bounded sequences.

[1]

[2]

References

M. Washihara: On ranked spaces and linearity. Proc. Japan Acad., 43,
584-589 (1967).

loc. cir.


