No. 4] Proc. Japan Acad., 44 (1968) 213

49, Calculus in Ranked Vector Spaces. II

By Masae YAMAGUCHI
Department of Mathematics, University of Hokkaido

(Comm. by Kinjiré KUNUGI, M. J. A., April 12, 1968)

1.6. Ranked vector space. In what follows we denote by R the
space of all real numbers with the usual topology.

(1.6.1) Definition. A space E which is satisfying the following
Conditions (I), (II) is called a ranked vector space.

(1.6.2) (I) FE is a vector space over the real or complex num-
bers and there is a countably family 28,(0), 8,(0), B,0), - - -, B,(), - - -
where each %8,(0) consists of subsets of E. Let 8(0)= U2,(0), then it
gatisfies the following conditions:

(A) Every V belonging to 8(0) contains zero;

(B) For any U, V e B(0), there exists a W ¢ B(0) such that

wWcUnv,

(a) For any U e B(0), and for an integer » (0<% < w,), there ex-
ists an integer m and a V ¢ B(0) such that

m>n, VeQB,0), and VcU;
() E ¢ B, 0).
With each element z ¢ E there is associated a non-empty set B(x) as
follows :
B@)={x+V; VeB0)}]
Every element U=x+V € B(x) is called a neighborhood of a point x.
Further, there is a countably system {%,} defined by
B,={x+V;xecE, VeB,(0)}
forn=0,1,2, ...

(1.6.3) (I) In E the following axioms hold [1]:

(1) There exists a non-negative function $(1, u), defined for 2>0
and p>0, such that lim ¢Q2, p)=co, and the following holds: if

2, um00

U e B,(0), VeB,(0), WeB,0), n<gl, m), and U+ VW, then there
is an integer n*>¢(l, m), and a neighborhood W* € B,.(0), such that
U+Vecw*cW.
(2) There exists a non-negative function (2, 1) defined for 2>0
and p>1 such that }im ¥(2, )= o0, for each fixed i, and the following

holds : let a be a scalar with |«|>1. If Ue B,(0), Ve®B,0), aUCV,
and n<y(m, |«|), then there is an integer n*>+y(m, |a|) and a
V € 8,.(0) such that

aUcC V*CV.
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B) Let UeB) and xc U. Then for any integer n, there is an
integer m>n, a neighborhood V ¢ LB,(0) and some positive p such
that

pxeVclU.

Moreover, we assume that every V in B(0) is circled (i.e., for
any x € V and for any a with |a| <1, ax e V).

Then it is clear that E is a ranked space with the indicator w,.

If a space E satisfies the following condition:

(1.6.4) For any U cB,(0) and Ve B,(0), there exists an integer
n such that

n>max(, m) and UNV e B,0),
then we can replace Axioms (1), (2), (3) of (1.6.3) by the following
axioms:

(1.6.5) (1)) There exists a function ¢(2, p) such as ¢ in (1) of
(1.6.3), and the following holds; for any U e B,(0) and for V e B,(0),
there is an integer n and a neighborhood W such that

n>¢(l, m), WeB,0), and U+VCW.

2"y There exists a function (A, ) such as ¥ in (2) of (1.6.3),
the following holds; for any U € B,(0) end for a with |a|>1, there
18 an integer n and a neighborhood V such that

n>¥(m, |al), VeB,0), and aUcCV.

(8) For any integer n and for any x in E, there is an integer
m, & neighborhood V and a positive number p such that

m>n, Ve®B,0), and pxecV.

(1.6.6) Example. Let E be a normed vector space, then it is a
ranked vector space.

In fact, we define {8,(0)} as follows:

B,(0)={V.(0)}, for n=0,1,2, .-

where V,,(O):{x;]lx||<-?1;}, for n=1,2,3, - -, and V,0)=E. Then

we have
1.6.7) m>n=V,(0)CV.(0).
Indeed, let x € V,,(0), then Hx[[<—1—. Since m>mn, lS-l—
m m- n

lell<X . zeV.0).
n

Let
%(0):{‘70(0), VI(O)’ Vz(o)’ 0y Vn(O)y v '},
for any x e F
§8(5‘7)={x‘*‘ Vn(O); n=0’ 1) 2’ v "}
and
B,={x+V,(0); zcE}, for n=0,1,2, -.-.
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It is clear that Condition (1.6.2) holds.

Let us show that Condition (1.6.3) holds. Since in this case by
(1.6.7) Condition (1.6.4) holds, it suffices to show that Axioms (1'),
(29, (8" hold.

Let ¢(4, y):min([%],[%]). If UeDB,0) and VeB,0), i.e.,

U=V,0) and V=V ,(0), then for any xc U,y eV, ||x||<%—, Yl <—71—n'

Here we may assume that [>m. Then since ¢(l, m)= [%@], if we put

m m 1.2
n=|—|, then n< = Lo m>2
1, 1_2_1
IIx+’y||£||wll+|\yll<7+—S——S—.
m-m- n

z+y e V,(0). . U+ 7V VL0,
where n>¢(l, m). Therefore Axiom (1’) holds.

Let (4, p):[i]. For any U e 8B,(0) and for a scalar a with
7

\a| >1, let z ¢ U, then we have ||ax||=|a|||w||<|a[%.
Since (m, |a|)=[—~m—], if we put n=—"", then laf o1
|| || m  n

||ax||<%, oo ax e Vi(0).

aUcV,(0),
where n>(m, |«|). Therefore Axiom (2’) holds.
Let x ¢ £ and n arbitrary non-negative integer. Put m=n+1,
then there exists a positive number p such that

p||x||<%, o 0% e Va(0) € Bu(0).

Thus a normed vector space E is a ranked vector space.

In a ranked vector space F the following proposition holds:

(1.6.8) Proposition. If E is a ranked vector space and {x,} is &
sequence in E, then {lim z,} s x s equivalent to {lim (x,—x)} > 0.

Proof. It follows from the definition of {lim x,} s« that there
exists a sequence {U,(x)} of neighborhoods of  and a sequence {«,} of
integers such that

Ux)DUy(x) D Uy(x) D+ - - DU (@)D -, 0Z<n<w,,
Lo <o, < Lo < -, 0SSN <wys
sup a,=w,, U,(x)>, and U,(x)ec%,,,

for n=0,1, 2, ~ ..
Since by (1.6.2) U,(x) can be written in the form x+ V,(0), V,(0) € B,,,
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using U,(x) 5 2,, we have V,(0) > ¢, —x, where V,(0) ¢ B,,. Therefore
{lim (z,—2)} 2 0.
It is obvious that the converse assertion holds.
Since the following Propositions (1.6.9), (1.6.10), (1.6.11) are
proved in the paper of M. Washihara [2], we shall omit.
(1.6.9) Proposition. Let E be a ranked vector space, {a,}, {yn}
sequences in B, and x,yc E. If {limx,}s x and {lim y,} >y, then
{lim (@, +y.)} 5 2+ v.
This means the continuity of addition.
(1.6.10) Proposition. Let E be a ranked vector space, {x.} @
sequence in K and xc¢ E. If {lim z,} > z, then, for any A c R,
{lim A%,} 5 Ax.
(1.6.11) Proposition. Let E be a ranked wvector space and
xekl., If limA,=4in R, then
{lim 2,2} 5 Ax.

(1.6.12) Proposition. Let E be a ranked vector space, {x,} a
sequence in E and x ¢ E. If {limz,}>x in E and lim 1,=21 in R, then
{lim A,2,} o 4.

Proof. (a) We shall consider the following special case:

]=0, x=0.
Then it follows from the definition of {lim x,} 5 0 that there exists a
sequence {U,(0)} of neighborhoods of zero and a sequence {«,} of inte-
gers such that
U0)2U(0)0U,0---2U,0)D--, 0<n< @,
aoSa1_<_aaS M Sans A} OSn<a)0,
sup ar=w, U,(0)sz, and U,0)e%,,
for n=0,1, 2, Lo
Since lim 4,=0, there is an positive integer N such that
n>N=> |4, L1,
1t follows, using the assumption that each U,(0) is circled, that
UN(O) El ZNa?N’ UN+1(0) El 2N+1xN+1y v
{lim Ay, nZy.n} 2 0.
By (1. 2. 3), we have "
{lim 4,2,} > 0.

(b) Let {limz,}s2 and limA,=4, ie., {lim(z,—2)}50 and

lim (1,—A)=0. From (a), we have
{lim (A, — D(x,—x)} 5 0.
{lim (A,2n — A%, — Az + A7)} 5 0.
By (1.6.9), (1.6.10), (1.6.11) the following hold,
{lim (A, + 4,2 — A%)} 3 Ax + Ax — Az = Ax.
{lim 2,2,} > Ax.
(1.6.13) Proposition. Let E,, E,, ---, E,, be a family of ranked
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vector spaces and let {zn}z{(xnn Lngs * * *» xnm)}’ {z;}={(x;u) x;m R x;m)}
be sequences in the direct product xXE,; and z=(x,, Xy, +++, Tp), 2’
=, x5, -+, xh) e XE,. If {limz,}>z and {lim2,} > 2/, then
{lim (z,+2,)} 52 +2.
Proof. By (1.5.1), {limz,} 22 and {lim 2} 5 2’ are equivalent to
the following :
{lim 2,,} 2 2, {lim @5} 2 25, - - -, {lim @} 3 T,
and
{lim a},} @1, {lim @5} 5 a3, - - -, {lim 7,,} 2 @/,.
Since E,, E,, - . -, E,, are ranked vector spaces, by (1.6.9) we have
{im (ny + 7} © @, 4 21, {lim (Bna+270)} 5 By 423, - - -,
(im (@pm + Znm)} 2 T+ 7.

{lim (2,+2,)} 2 2+ 2.
(1.6.14) Proposition. Let E,, E,, ..., E,, be a family of ranked
vector spaces and let {2,}={(ny, Tng, -, Tum)} be @ sequence in the

direct product X E;, and 2= (,, %,, - - -, ) € X E,;. If {limz,} > 2, then,
for any Ac R,
{lim 4z,} = Az.
Proof. {limz,}> z is equivalent to the following:
{lim @} 5 @, {lim @5} 2 25, - - -, {lim 2} 5 Tp.
Since E,, E,, - - -, E,, are ranked vector spaces, by (1.6.10) we have
for any 2e R,
{lim A%} o A%y, {lim A%,5} 3 A%y, - - -, {lim A%n} 2 AZp.
{lim Zz,} > Zz.

(1.6.15) Proposition. Let z2=(x;, %, -+, Tn) be an arbitrary
element of the direct product XE; of the ranked spaces E,, E,,
E,.. Iflimi,=21in R, then

{lim 2.2} 5 Z2.
Proof. If limA,=4in R, by (1.6.11), we get
{lim 2,2,} 3 22;, {lim 2,%,} 2 A%,, - - -, {lim 2,%n} 5 A%
{lim 4,2} = Zz.

(1.6.16) Proposition. Let E,, E,, ---, E,, be a family of ranked
vector spaces and let {2,}={(Zn1, Tng, - * +, Lum) @ Sequence of the direct
product XE; and 2= (&, %y - -+, ¥n) € XE,. If {limz,} 52z in XE; and
lim 2,=41 in R, then

ey,

{lim 2,2,} > 4z.
Proof. By (1.5.1) {lim 2,} o 2 is equivalent to the following:
(lim ®,,} 3 2y, {lim n5} 2 25, - - -, {lim Ty} 5 Tpe
It follows from (1.6.12), using the assumption lim 1,=4, that
{lim 2,251} 3 A%y, {lim 2,&4s} D A5, - - -, {liM 2, nm} 2 A2
{lim 2,2,} = 42.
In the direct product X E, of the ranked vector spaces E,, E,, - - -,
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E, (1.6.13) means the continuity of addition, and (1.6.14), (1.6.15),
(1.6.16) mean the continuity of the scalar multiplication. Thus we
may consider the direct product x E; of the ranked spaces E,, E,, - - -,
E., as a ranked vector space.

1.7. Quasi-bounded sequence. (1.7.1) Definition. Let {z,} be
a sequence in a ranked vector space E. Then a sequence {x,} is called
a quasi-bounded sequence in E if and only if, for any sequence {x,}
in R with p,—0,

{lim p,2,} > 0.

(1.7.2) Proposition. Let {x,} be a sequence in a ranked vector
space E. If {lim x,} > x in E, then {x,} is & quasi-bounded sequence.

Proof. Let {y,} be an arbitrary sequence in R with p,—0, then
it follows from (1.6.12), using the assumption that {lim z,} > z, that

{lim p,2,}20-2=0.
Hence {x,} is a quasi-bounded sequence.

(1.7.3) In particular, if x,=x for n=0, 1, 2, ..., then by (1.2.4)
{lim z,} o x. Therefore it is also a quasi-bounded sequence.

One easily verifies the following proposition :

(1.7.4) Proposition. Let {x,} be a quasi-bounded sequence in a
ranked vector space E. If {x,} is an arbitrary subsequence of {x,},
then it is also a quasi-bounded sequence.

(1.7.5) Proposition. Let {x,}, {y.} be two quasi-bounded se-
quences in a ranked vector space E, and a, B8, v arbitrary numbers of
R. Then {ax,}, and {fx,+ Y.} are also quasi-bounded sequences.

Proof. It is suffices to show that {8z, + 7¥.} is a quasi-bounded
sequence. Let {x,} be a sequence in R with g,—0.

By assumption we have
{lim (Bun)x,} 20, and {lim (y4.)¥.}30.
{im p.(B2, + ryn)} 2 0.
Thus if {z.}, {y.} are quasi-bounded sequences, then, for any
a, B, reR,
{awa},  {B2n+7ya}
are also quasi-bounded sequences.
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