47. On a Kind of Uniqueness of Set-Entourage Uniformities for Function Spaces

By Takashi KARUBE

Department of Mathematics, Shimane University, Matsue (Comm. by Kinjirô KUNUGI, M. J. A., April 12, 1968)

Let \mathfrak{W}_p , \mathfrak{W}_c , and \mathfrak{W}_u be respectively the uniformity of pointwise, compact, and uniform convergence on a family of mappings of a uniform space into another uniform space. Usually uniformities \mathfrak{W}_p and \mathfrak{W}_u are simpler than \mathfrak{W}_c for our use, but defective in some respect $-\mathfrak{W}_p$ is in many ways unnatural (cf. [3], p. 219) and \mathfrak{W}_u can be applied only to families of uniformly continuous mappings when the continuity of operation of mapping composition is required (cf. Theorems 4 and 5 of [2]). On the other hand, as for \mathfrak{W}_c there are no such defects as above and many desirable properties have been found in the literature. It seems to us that \mathfrak{W}_c is the most natural set-entourage uniformity for families of mappings.

Let X be, for example, any locally euclidean, uniformly locally connected, metric space or any convex subset of a normed space, and let \mathfrak{C} be the family of all continuous mappings of X into itself. The purpose of this note is to show that any set-entourage uniformity on \mathfrak{C} must coincides with \mathfrak{W}_c , if the joint continuity and the continuity of operation of mapping composition are required under the uniform topology. This is an answer to the problem proposed in [2].

We begin with the definition of two terms used in the main theorem.

Definition 1. A uniform space X endowed with a uniformity $\mathfrak{l}\mathfrak{l}$ is uniformly deformable if for any entourage $U \in \mathfrak{l}\mathfrak{l}$ there exists an entourage $U^* \in \mathfrak{l}\mathfrak{l}$ as follows: for any two U*-close points p and q, there exists a continuous mapping f of X into itself such that f(p) = q and $(x, f(x)) \in U$ for any $x \in X$.

Examples. The following spaces i), ii), \dots , v) are uniformly deformable uniform spaces, whereas the space vi) is a manifold that is not uniformly deformable: i) locally euclidean, uniformly locally connected, uniform spaces, ii) locally euclidean, compact, uniform spaces, iii) convex subsets of a normed space, iv) the set of all rational points in a euclidean space, v) discrete uniform spaces, and vi) the set of all points (x, y) in the euclidean plane such that $(x^2+1)y^2 > x$. (The uniformities of iii), iv), and vi) are the usual ones.)

Definition 2. A topological space is *locally dense* if there exists a family of dense-in-itself open sets which forms an open base for the topology of the space.

Now we prove the main theorem.

Theorem 1. Let X be a uniformly deformable, locally dense, locally compact, metric space that contains a non-degenerate arc, F (resp. C) the family of all mappings (resp. all continuous mappings) of X into itself, \mathfrak{W}_c the uniformity of compact convergence on F, and \mathfrak{W} any set-entourage uniformity on F. Then \mathfrak{W} coincides with \mathfrak{W}_c on C if and only if the mapping $(u, x) \rightarrow u(x)$ of $\mathfrak{C} \times X$ into X and the mapping $(u, v) \rightarrow u \circ v$ of $\mathfrak{C} \times \mathfrak{C}$ into C are continuous with respect to the relative topology on C induced by the uniformity \mathfrak{W}_c .

Proof. The necessity under the condition that X is locally compact is well-known (cf. [1]). We prove the sufficiency. Let \mathfrak{S} be the family of subsets of X which defines the uniformity \mathfrak{W} , and K be a non-degenerate arc in X. Let A be any set belonging to \mathfrak{S} . Every continuous mapping f of \overline{A} into K has a continuous extension to X by the extension theorem of Tietze. Since the operation of composition of mappings belonging to \mathfrak{S} is continuous relatively, it is seen by § 5 of [2] that

i) f must be uniformly continuous on \overline{A} , and

ii) there exist an entourage U of the metric uniformity on X and a set $B \in \mathfrak{S}$ such that $U(\overline{A}) \subset \overline{B}$.

The fact that i) has been shown implies that for each set $C \in \mathfrak{S}$ the derived set of \overline{C} is compact (cf. [4]). Since X is locally dense, there exists a dense-in-itself neighborhood V of A such that $V \subset U(\overline{A})$, and so $\overline{A} \subset V \subset \overline{B}'$ for B in ii), where \overline{B}' is the derived set of \overline{B} . Hence \overline{A} is compact. Consequently we have shown that \mathfrak{M}_c is finer than the uniformity $\overline{\mathfrak{M}}$ of $\overline{\mathfrak{S}}$ -convergence, where $\overline{\mathfrak{S}} = \{\overline{A} \mid A \in \mathfrak{S}\}$. Now by the joint continuity on $\mathfrak{C} \times X$, $\overline{\mathfrak{M}}$ is finer than \mathfrak{M}_c (cf. Theorems 2 and 3 of [2]). Finally the fact that $\overline{\mathfrak{M}}$ coincides with \mathfrak{M} on $\mathfrak{C} \times \mathfrak{C}$ ([1], p. 280) completes the proof.

Corollary. If X is a locally euclidean, uniformly locally connected, metric space or a convex subset of a normed space, then the conclusion of Theorem 1 is valid.

Remark. If X is a *compact* uniform space that contains a nondegenerate arc, then \mathfrak{W} coincides with \mathfrak{W}_c on \mathfrak{C} if and only if \mathfrak{W} gives the joint continuity on $\mathfrak{C} \times X$. In fact \overline{A} is compact for any $A \in \mathfrak{S}$, and so \mathfrak{W}_c is finer than $\overline{\mathfrak{W}}$. The remaining parts of the proof are the same as those in Theorem 1.

Theorem 2. Let X be a locally dense, locally compact, metric space that contains a non-degenerate arc, and let $\mathfrak{F}, \mathfrak{S}, \mathfrak{W}_c$, and \mathfrak{W} be

No. 4]

T. KARUBE

the same as those in Theorem 1. Then \mathfrak{W} coincides with \mathfrak{W}_{\circ} if and only if the mapping $(u, x) \rightarrow u(x)$ of $\mathfrak{F} \times X$ into X and the mapping $(u, v) \rightarrow u \circ v$ of $\mathfrak{F} \times \mathfrak{F}$ into \mathfrak{F} are continuous on $\mathfrak{C} \times X$ and $\mathfrak{C} \times \mathfrak{C}$ respectively with respect to the topology on \mathfrak{F} induced by \mathfrak{W} .

Proof. A slight modification of the proof in Theorem 1, using Theorems 2 and 4 in [2], gives the proof.

References

- [1] N. Bourbaki: General Topology. Part 2, translated from French, Hermann and Addison-Wesley (1966).
- [2] T. Karube: Uniformities for function spaces and continuity conditions (to appear).
- [3] J. L. Kelly: General Topology. D. Van Nostrand (1955).
- [4] N. Levine and W. G. Saunders: Uniformly continuous sets in metric spaces. Amer. Math. Monthly, 67, 153-156 (1960).

206