46. Extended p-th Powers of Complexes and Applications to Homotopy Theory

By Hirosi Toda
Department of Mathematics, Kyoto University, Kyoto
(Comm. by Zyoiti Suetuna, m. J. A., April 12, 1968)

1. Extended \boldsymbol{p}-th power of a complex. Throughout this note p will denote an odd prime, $m=(p-1) / 2, \pi=Z_{p}$ a cyclic group of order p, and the homology and cohomology groups will have the coefficient group Z_{p}. Let $W=W^{\infty}\left(=S^{\infty}\right)$ be a regular π-free acyclic $C W$-complex having one π-free basic cell e_{i} for each dimension i. The cells e_{i} are oriented such that in the infinite dimensional lens space W / π the dual $w_{i} \in H^{i}(W / \pi)$ of the class of e_{i} satisfies $w_{2 i}=\left(w_{i}\right)^{2}$ and $\beta\left(w_{2}\right)=w_{1}$ for the cohomology Bockstein β.

For a finite $C W$-complex X, the product and the reduced join of p-copies of X will be denoted by $X^{p}=X \times \cdots \times X$ and $X^{(p)}=X \wedge \cdots \wedge X$ respectively. Let π acts on X^{p} and $X^{(p)}$ as cyclic permutations of the factors, and consider the quotient complexes

$$
W^{r} \times{ }_{\pi} X^{p} \quad \text { and } \quad e p^{r}(X)=\left(W^{r} \times{ }_{\pi} X^{(p)}\right) /\left(W^{r} / \pi\right)
$$

where W^{r} indicates the r-skeleton of X and $W^{r} / \pi=W^{r} \times_{\pi} x_{0}^{(p)}$ for the base point x_{0} of X. Let $x_{0}, x_{1}, x_{2}, \cdots$ be a Z_{p}-basis of homogeneous elements of $H_{*}(X)$ which satisfies that if $\Delta x_{j} \neq 0$ for the homology Bockstein then $\Delta x_{j}=x_{l}$ for some l. A Z_{p}-basis of $H_{*}\left(W \times{ }_{\pi} X^{p}\right)$ is given as the classes represented by the following cycles (cf. [2], [3]):

$$
\begin{aligned}
& e_{i} \otimes_{\pi} x_{j}^{p}, \quad j=0,1,2, \cdots, \quad x_{j}^{p}=x_{j} \otimes \cdots \otimes x_{j} \text { (} p \text {-times), } \\
& e_{0} \otimes_{\pi}\left(x_{j_{1}} \otimes \cdots \otimes x_{j_{p}}\right), \quad j_{s} \neq j_{t} \quad \text { for some } s, t
\end{aligned}
$$

where $\left(j_{1}, \cdots, j_{p}\right)$ runs through each representatives of the classes obtained by cyclic permutations of the indices. The same result holds for $H_{*}\left(W^{r} \times{ }_{\pi} X^{p}\right)$ restricting e_{i} by $0 \leq i \leq r$ and by adding cycles of the form $\partial\left(e_{r+1} \otimes_{\pi}\left(x_{j_{1}} \otimes \cdots \otimes x_{j_{p}}\right)\right.$).

By the natural projection $W^{r} \times_{\pi} X^{p} \rightarrow e p^{r}(X)$, a Z_{p}-basis of $\bar{H}_{*}\left(e p^{r}(X)\right)$ is obtained from that of $H_{*}\left(W^{r} \times{ }_{\pi} X^{p}\right)$ by omitting the cycles containing x_{0}.

Denote by $P_{*}^{i}: H_{q} \rightarrow H_{q-2 i(p-1)}$ the dual of the Steenrod reduced power P^{i}, and let $P_{*}^{i} x_{k}=\Sigma_{j} a_{k, j}(i) x_{j}$ for $a_{k, j} \in Z_{p}$. Then the following relation has been established in [3].

Theorem 1. (Nishida).

$$
P_{*}^{n}\left(e_{c+2 n(p-1)} \otimes_{\pi} x_{k}^{p}\right)=\Sigma_{i, j}\binom{[c / 2]+q m}{n-p i} a_{k, j}(i)\left(e_{c+2 i p(p-1)} \otimes_{\pi} x_{j}^{p}\right)
$$

$$
-\mu(q) \varepsilon(c+1) \Sigma_{i, j}\binom{[(c+1) / 2]+q m-1}{n} p_{-1}(i)\left(e_{c+p+2 i p(p-1)} \otimes_{\pi} x_{j}^{p}\right),
$$

where c may be negative, $q=\operatorname{deg} x_{k}, m=(p-1) / 2, \mu(t)=(-1)^{m t} / m!$, $\varepsilon(s)=1$ if s is even, $\varepsilon(s)=0$ if s is odd, $x_{l}=\Delta x_{k}$ if $\Delta x_{k} \neq 0$, and the second term is omitted if $\Delta x_{k}=0$.

As is easily seen, $\Delta\left(e_{s} \otimes_{\pi} x_{j}^{p}\right)=\varepsilon(s) e_{s-1} \otimes_{\pi} x_{j}^{p}$.
For a base point preserving cellular map $f: X \rightarrow Y$, the product $1 \times f^{p}: W^{r} \times X^{p} \rightarrow W^{r} \times Y^{p}$ defines a cellular map

$$
e p^{r}(f): e p^{r}(X) \rightarrow e p^{r}(Y) .
$$

Obviously, $e p^{r}(f) \mid e p^{s}(X)=e p^{s}(f), s \leq r, e p^{0}(f)=f \wedge \cdots \wedge f(p$-times $)$, $e p^{r}(1)=1, \quad e p^{r}(g) \circ e p^{r}(f)=e p^{r}(g \circ f)$, and if $f \simeq f^{\prime}$ (homotopic) then $e p^{r}(f) \simeq e p^{r}\left(f^{\prime}\right)$.

Denote by $C_{f}=Y \cup_{f} C X$ the mapping cone of f and represents each point of $C X$ by $(x, t), x \in X, t \in I=[0,1]$, with $(x, 1)=\left(x_{0}, t\right)=y_{0}$, and $(x, 0)=f(x)$. Then the natural inclusion of $e p^{r}(Y)$ into $e p^{r}\left(C_{f}\right)$ can be extended over a map (not cellular)

$$
D_{f}: C_{e p^{r}(f)}=e p^{r}(Y) \cup C\left(e p^{r}(X)\right) \rightarrow e p^{r}\left(C_{f}\right)
$$

by sending $\left(w \times\left(x_{1} \wedge \cdots \wedge x_{p}\right)\right.$, $)$ to $w \times\left(\left(x_{1}, t\right) \wedge \cdots \wedge\left(x_{p}, t\right)\right)$. Assume that the induced chain map $f_{\sharp}: C_{*}(X) \otimes Z_{p} \rightarrow C_{*}(Y) \otimes Z_{p}$ is trivial, hence so is $e p^{r}(f)_{\sharp}$. Then there is a canonical splitting $H_{q+1}\left(C_{f}\right)$ $=H_{q}(X)+H_{q+1}(Y)$. Denote by $\hat{x}=x^{\wedge} \in H_{q+1}\left(C_{f}\right)$ the element corresponding to $x \in H_{q}(X)$, and similarly for $C_{e p^{r}(f)}$. Then we have

Theorem 2. $\quad D_{f *}\left(\left(e_{i} \otimes_{\pi} x^{p}\right)^{\wedge}\right)=-\mu(q+1)\left(e_{i-p+1} \otimes_{\pi}(\hat{x})^{p}\right) \quad(=0 \quad$ if $i<p-1$).

In order to prove this, consider the diagonal map $d: W^{r} \times I$ $\rightarrow W^{r} \times I^{p}$. Leaving fix d on $W^{r} \times \partial I$, we can deform d equivariantly toa cellular map d^{\prime}. Put $D_{f}^{\prime}\left(w \times\left(x_{1} \wedge \cdots \wedge x_{p}\right), t\right)=w^{\prime} \times\left(\left(x_{1}, t_{1}\right) \wedge \cdots\right.$ $\left.\wedge\left(x_{p}, t_{p}\right)\right)$ for $d^{\prime}(w, t)=\left(w^{\prime}, t_{1}, \cdots, t_{p}\right)$. Then $D_{f} \simeq D_{f}^{\prime}$. Let $d_{\sharp}^{\prime}\left(e_{i} \otimes_{n} I\right)$ $=\lambda \cdot e_{i-p+1} \otimes_{\pi} I^{p}+\cdots$, where each of the rest terms contains a face of I^{p}. Then, by use of the assumption $f_{*}=0$, we have $D_{f *}\left(\left(e_{i} \otimes_{\pi} x^{p}\right)^{\wedge}\right)$ $=D_{j *}^{\prime}\left(\left(e_{i} \otimes_{\pi} x^{p}\right)^{\wedge}\right)= \pm \lambda \cdot e_{i-p+1} \otimes_{\pi}(\hat{x})^{p}$. Here the sign $\pm=(-1)^{q p(p-1) / 2}$ $=(-1)^{m q}$ is caused of the permutation $(X \times I)^{p} \rightarrow X^{p} \times I^{p}$ and the coefficient λ is $(-1)^{m} m!$ by Lemma 5.3 of [4, VII] by considering the case $C_{f}=S^{1} . \quad$ This proves Theorem 2.
2. Special cases. In the following, n will be sufficiently large so that complexes and maps considered are in stable range. S^{n} denotes an n-sphere, $M_{p}^{n+1}=s^{n} \cup_{p} e^{n+1}$ a Moore space of type (Z_{p}, n), and $i: S^{n} \rightarrow M_{p}^{n+1}$ and $\pi: M_{p}^{n} \rightarrow S^{n}$ the natural maps. We shall write sometimes the stable homotopy class of a map $f: X \rightarrow Y$ by the same symbol $f \in\{X, Y\}=\lim \left[S^{n} X, S^{n} Y\right]$. For example, $\delta=i \pi \in\left\{M_{p}^{n}, M_{p}^{n+1}\right\}$, and a generator α of $\left\{M_{p}^{n+2 p-2}, M_{p}^{n}\right\} \approx Z_{p}$ is characterized by the relation $P_{*}^{1} e^{n+2 p-1}=e^{n+1}$ in the mapping cone C_{α} of $\alpha . G_{t}=\left\{S^{n+t}, S^{n}\right\}$ is the
t-stem group, and $\alpha_{1}=\pi \alpha i \in G_{2 p-3}$ is the first element of order p.
First consider the complex $e p^{2 r}\left(S^{n}\right)$ which consists of a vertex x_{0} and cells $e^{p n+j}, 0 \leq j \leq 2 r$, with $\partial\left(e^{p n+2 i}\right)=p \cdot e^{p n+2 i-1}$. Up to homotopy type, $e p^{2 r}\left(S^{n}\right)$ is a mapping cone of a map $M_{p}^{p n+2 r-1} \rightarrow e p^{2 r-2}\left(S^{n}\right)$. Using the results on the stable groups, we have

Lemma 1. ep $p^{4 p-6}\left(S^{n}\right)$ has the same homotopy type as the bouquet of some mapping cones $S^{p n} \cup C M_{p}^{p n+2 p-3}$ and $M_{p}^{p n+2 i} \cup C M_{p}^{p n+2 i+2 p-3}$, $1 \leq i \leq p-2$. In particular, $S^{p n}$ is a retract of $e p^{p-1}\left(S^{n}\right)$ and there exists a map of $M_{p}^{p n+p-1}$ into ep $p^{p-1}\left(S^{n}\right)$ inducing a monomorphism of the homology.

Here the attaching maps of the above mapping cones are determined by P_{*}^{1}. By Theorem 1 we have $P_{*}^{1}\left(e^{p n+j+2 p-2}\right)=([j / 2]+n(p-1)$ $/ 2) e^{p n+j}$. In particular the attaching map of the first mapping cone is a multiple of $\pi \alpha \delta$ and it is trivial if and only if $n \equiv 0(\bmod p)$. Thus we have

Lemma 2. There exists a map of ep $p^{4 p-6}\left(S^{n}\right)$ into $C_{\alpha_{1}}=C_{i \alpha \pi}=S^{p n}$ $\cup e^{p n+2 p-2}$ which is identical on $e p^{0}\left(S^{n}\right)=S^{p n}$. If $n \equiv 0(\bmod p)$ then we can replace $C_{\alpha_{1}}$ by $S^{p n}$ and there exists a map of $M_{p}^{p n+2 p-2}$ into ep $p^{2 p-2}\left(S^{n}\right)$ inducing a monomorphism of the homology.

Next consider $e p^{r}\left(M_{p}^{n+1}\right)$. For $x \in H_{n+1}\left(M_{p}^{n+1}\right)$, we have by Theorem $1 P_{*}^{1}\left(e_{p-2} \otimes_{\pi} x^{p}\right)=-\mu(n+2) e_{0} \otimes_{\pi}(\Delta x)^{p}$ and $P_{*}^{1}\left(e_{p-1} \otimes_{\pi} x^{p}\right)=0$. Thus we have

Lemma 3. There exists a map of $C_{\pi \alpha}=S^{p n} \cup_{\pi \alpha} C M_{p}^{p n+2 p-2}$ into $e p^{p-1}\left(M_{p}^{n+1}\right)$ which is identical on $S^{p n}=e p^{0}\left(S^{n}\right) \subset e p^{0}\left(M_{p}^{n+1}\right)$.

Consider $\alpha_{1}: S^{n+2 p-3} \rightarrow S^{n}$ and the induced map $e p^{r}\left(S^{n+2 p-3}\right) \rightarrow e p^{r}\left(S^{n}\right)$ for $r<2 p(p-1)$. In $e p^{r}\left(C_{\alpha_{1}}\right)$ we see by Theorem 1 that $P_{*}^{p}\left(e_{s} \otimes_{\pi} x^{p}\right)$ $=-\mu(n+2) \varepsilon(s+1)\left(e_{s-p} \otimes_{\pi}\left(P_{*}^{1} x\right)\right), \quad x \in H_{n+2 p-2}\left(C_{\alpha_{1}}\right)$. By Theorem 2, this gives a non-triviality of the functional P^{p}-operation for $e p^{r}\left(\alpha_{1}\right)$. In particular, we have

Lemma 4. Let $\bar{\beta}: M_{p}^{p n+2 p(p-1)-1} \rightarrow e p^{p-1}\left(S^{n+2 p-3}\right) \rightarrow e p^{p-1}\left(S^{n}\right) \rightarrow S^{p n}$ be the composition of the map of Lemma 1 to $e p^{p-1}\left(S^{n+2 p-3}\right)$, $\mathrm{ep}^{p-1}\left(\alpha_{1}\right)$ and the retraction of Lemma 1. Then $\bar{\beta} \mid S^{p n+2 p(p-1)-2}=\beta_{1}$ is a generator of the p-component of $G_{2 p(p-1)-2}$.

Finally consider $\alpha i: S^{n+2 p-2} \rightarrow M_{p}^{n+1}$ and $e p^{2 p-2}(\alpha i)$ for the case $n \equiv 2$ $(\bmod p)$. Let $j: M_{p}^{a} \rightarrow e p^{2 p-2}\left(S^{n+2 p-2}\right)$ be the map of Lemma 2, $a=p n$ $+2(p+1)(p-1)$. Denote by β_{s} a generator of the p-component of $G_{2(s p+s-1)(p-1)-2}, 1 \leq s \leq p-1$.

Lemma 5. For an element $\tilde{\beta}_{s-1}$ of $\pi_{b}\left(M_{p}^{a}\right), \quad b=p n+2(s p+s-1)$ $\times(p-1)-2$, such that $\pi \tilde{\beta}_{s-1} \beta_{s}=-1$, we have eppr2$(\alpha i)_{*} j_{*} \beta_{s-1} \equiv i_{*} \beta_{s}$, $i: S^{p n} \subset e p^{2 p-2}\left(S^{n}\right)$, modulo the images of $\pi_{b}\left(M_{p}^{p n+2}\right)$ and $\pi_{b}\left(M_{p}^{p_{n+3}}\right)$, $2 \leq s \leq p-1$.

The proof is based on the methods in [8], [9], but the details are
too long to describe here.
3. Relations in stable homotopy. As before $\alpha_{1} \in G_{2 p-3}$ and $\beta_{s} \in G_{2(s p+s-1)(p-1)-2}, 1 \leq s \leq p-1$, are elements of order p.

Theorem 3. If $p \cdot \gamma=0$ for $\gamma \in G_{t}$, then $\alpha_{1} \gamma^{p}=0$ and $\left\{\gamma^{p}, \alpha_{1}, p \iota\right\} \equiv 0$.
Proof. By the assumption there exists a map $f: M_{p}^{n+1} \rightarrow S^{n-t}$ such that $f \mid S^{n}$ represents γ. Consider the composition of the map $C_{\pi \alpha}$ $\rightarrow e p^{p-1}\left(M_{p}^{n+1}\right)$ of Lemma 3, the induced map $e p^{p-1}(f): e p^{p-1}\left(M_{p}^{n+1}\right)$ $\rightarrow e p^{p-1}\left(S^{n-t}\right)$ and the retraction $e p^{p-1}\left(S^{n-t}\right) \rightarrow S^{p n-p t}$ of Lemma 1. Its restriction on $S^{p n}$ represents γ^{p}. The existence of such a map is equivalent to $\gamma^{p} \pi \alpha=0$ which indicates the last assertion, and $\alpha_{1} \gamma^{p}$ $=\gamma^{p} \alpha_{1}=\gamma^{p} \pi \alpha i=0$.

Theorem 4. If $\alpha_{1} \gamma=0$ for $\gamma \in G_{t}$, then $\beta_{1} \gamma^{p}=0$ and $\left\{\gamma^{p}, \beta_{1}, p \ell\right\} \equiv 0$.
Proof. By the assumption, e $p^{p-1}(\gamma) \circ e p^{p-1}\left(\alpha_{1}\right)$ is homotopic to zero. Let $j: M_{p}^{p_{n+2 p(p-1)-1} \rightarrow e p^{p-1}\left(S^{n+2 p-3}\right) \text { be the map of Lemma } 1 . ~ . ~ . ~}$ Since $\left\{M_{p}^{p_{n}+2 p(p-1)-1}, M_{p}^{p_{n}+2 i}\right\}=0$ for $1 \leq i<p-1$, Lemma 1 and Lemma 4 show that $e p^{p-1}\left(\alpha_{1}\right) \circ j$ is homotopic to $\bar{\beta}$. Then applying the retraction $e p^{p-1}\left(S^{n-t}\right) \rightarrow S^{p n-p t}$ of Lemma 1 we have that $\gamma^{p} \circ \bar{\beta}$ is homotopic to zero, and the theorem follows.

Theorem 5. If $\left\{\alpha_{1}, p \iota, \gamma\right\} \equiv 0$ for $\gamma \in G_{t}$ and $2 \leq s \leq p-1$, then $\beta_{s} \gamma^{p} \equiv 0 \bmod \alpha_{1} G_{c}, c=p t+2(s p+s-2)(p-1)-1$.

Proof. Remark that in Lemma 5 the generators of $\pi_{b}\left(M_{p}^{p n+2}\right)$ and $\pi_{b}\left(M_{p}^{p_{n}+8}\right)$ are of the form $\xi \alpha_{1}$. By the assumption $\bar{\gamma} \circ \alpha i \simeq 0$ for an extension $\bar{\gamma}: M_{p}^{n+1} \rightarrow S^{n-t}$ of γ. Let $r: e p^{2 p-2}\left(S^{n-t}\right) \rightarrow C_{\alpha_{1}}=S^{p n-p t}$ $\cup e^{p n-p t+2 p-2}$ be the map of Lemma 2. Then $r_{*} e p^{2 p-2}(\bar{\gamma})_{*} e p^{2 p-2}(\alpha i)_{*} j_{*} \beta_{s-1}$ and $r_{*} e p^{2 p-2}\left(\pi_{b}\left(M_{p}^{p n+i}\right)\right), i=2,3$, vanish. Thus Lemma 5 shows $i_{*}\left(\gamma^{p} \beta_{s}\right)$ $=r_{*} e p^{2 p-2}(\bar{\gamma})_{*} i_{*} \beta_{s}=0$, i.e., $\beta_{s} \gamma^{p}=\gamma^{p} \beta_{s} \equiv 0 \bmod \alpha_{1} \cdot G_{c}$.

For the case $\gamma=\beta_{1}$ and $s=2$, we know that the p-component of G_{c} vanishes [7]. Thus

Corollary 1. $\beta_{2} \beta_{1}^{p}=0$, and the p-component of the $\left(2\left(p^{2}+2 p\right)\right.$ $\times(p-1)-4)$-stem group vanishes.

By Theorems 3 and 4 , we have $\beta_{1}^{p^{2}+1}=0$, but this is not best possible since $\beta_{1}^{6}=0$ for $p=3$. If $p \geq 5$ and $2 \leq s \leq p-1$, then $\left\{\alpha_{1}, p \iota, \beta_{s}\right\}$ $\equiv 0$. It follows from Theorems 5 and 3 that $\beta_{s}^{2 p+1}=0$. If $p=3$ we have $\left\{\alpha_{1}, 3 \iota, \beta_{2}\right\}= \pm \beta_{1}^{3}$, hence $\left\{\alpha_{1}, 3 \iota, \beta_{2}^{2}\right\} \equiv \pm \beta_{2} \beta_{1}^{3}=0$. Thus we have $\beta_{2}^{10}=0$.

Corollary 2. The elements $\beta_{s}, 1 \leq s \leq p-1$, are nilpotent.
Here we make some remarks. As in Lemma 4, for a map $p: S^{n} \rightarrow S^{n}$ of degree p, the map $e p^{2 p-2}(p)$ composed with maps of Lemma 2 gives $\pi \alpha$. The composition of the map of Lemma 3 and $e p^{p-1}(\bar{\beta})$ for the map $\bar{\beta}$ of Lemma 4 has a non-trivial functional $P^{p^{2}}$ operation. This proves the main theorem of [7]. Further discussions give a complex $S^{n} \cup e^{n+a} \cup e^{n+b} \cup e^{n+b+1} \cup e^{n+c} \cup e^{n+c+1}, \quad a=p^{2}(2 p(p-1)$
$-2)+1, \quad b=a+2 p(p-1)-1, \quad c=b+2 p-1=2 p^{3}(p-1)-1$, with $P^{p 3} H^{n}$ $=\beta P^{1} P^{p} H^{n+a}=H^{n+c+1}$ and $\beta_{1}^{p^{2}}$ as the attaching map of e^{n+a}.
4. Non-associativity in mod 3 generalized cohomology theory. Let h^{*} be a generalized (reduced cohomology theory equipped with a commutative and associative multiplication μ. For an integer $q>1$, $\bmod q$ cohomology theory $h^{*}\left(; Z_{q}\right)$ is defined by $h^{i}\left(X ; Z_{q}\right)=h^{i+2}$ $\times\left(X \wedge M_{q}\right), M_{q}$ being a Moore space of type $\left(Z_{q}, 1\right)$. If $q \not \equiv 2(\bmod 4)$, $M_{q} \wedge M_{q}$ is stably homotopy equivalent to $S M_{q} \vee S^{2} M_{q}$. Let $\psi: S^{2} M_{q}$ $\rightarrow M_{q} \wedge M_{q}$ and $\varphi: M_{q} \wedge M_{q} \rightarrow S M_{q}$ be the natural maps composed the above equivalence. Then $\mu_{q}=\sigma^{-2}(1 \wedge \psi)^{*} \mu$ gives an admissible multiplication in $h^{*}\left(; Z_{q}\right)$ in the sense of [1].

We consider the case that q is odd, then $\psi \simeq T \psi$ for the switching permutation T of $M_{q} \wedge M_{q}$. This implies the commutativity of μ_{q}. Also, the associativity is deduced from $(1 \wedge \psi) S^{2} \psi \simeq(\psi \wedge 1)(1 \wedge T) S^{2} \psi$. By $\psi \simeq T \psi$ we have $(\psi \wedge 1)(1 \wedge T) S^{2} \psi=P(1 \wedge \psi)\left(S^{2} T\right)\left(S^{2} \psi\right) \simeq P(1 \wedge \psi) S^{2} \psi$ for a cyclic permutation P of $M_{q}^{(3)}=M_{q} \wedge M_{q} \wedge M_{q}$. The stable group $\left\{S^{4} M_{q}, M_{q}^{(3)}\right\}$ is generated by the element $(1 \wedge \psi) S^{2} \psi$ of order q and the composition $i \alpha_{1} \pi: S^{4} M_{q} \rightarrow S^{6} \rightarrow S^{3} \rightarrow M_{q}^{(3)}$ of order ($q, 3$). By the arguments of [1] we have $(1 \wedge \psi) S^{2} \psi-P(1 \wedge \psi) S^{2} \psi=k \cdot i \alpha_{1} \pi$ for some $k \in Z_{(q, 3)}$ and this implies the relation $x(y z)-(x y) z=k \cdot \alpha_{1}^{* *}\left(\delta_{q} x\right)\left(\delta_{q} y\right)\left(\delta_{q} z\right)$ in $h^{*}\left(; \boldsymbol{Z}_{q}\right]$.

Similarly, $S \varphi(1 \wedge \varphi)-S \varphi(1 \wedge \varphi) P=k^{\prime} \cdot i^{\prime} \alpha_{1} \pi^{\prime}$ for some $k^{\prime} \in Z_{(q, 3)}$ and $i^{\prime} \alpha_{1} \pi^{\prime}: M_{q}^{(3)} \rightarrow S^{b} \rightarrow S^{3} \rightarrow S^{2} M_{q}$, and this implies $x(y z)-(x y) z=k^{\prime} \cdot \alpha_{1}\left(\partial_{q} x\right)$ $\times\left(\partial_{q} y\right)\left(\partial_{q} z\right)$ for the multiplication in the stable group $\pi_{*}\left(M_{q}\right)$ given by φ. By use of $\varphi \psi=0, \pi=\pi^{\prime}(1 \wedge \psi) S^{2} \psi, i^{\prime}=S \varphi(1 \wedge \varphi) i$, we have $k \cdot i^{\prime} \alpha_{1} \pi=-S \varphi(1 \wedge \varphi) P(1 \wedge \psi) S^{2} \psi=k^{\prime} \cdot i^{\prime} \alpha_{1} \pi$, and this implies $k \equiv k^{\prime}(\bmod$ $(q, 3)$). Obviously $h^{*}\left(; Z_{q}\right)$ and $\pi_{*}\left(M_{q}\right)$ are associative if $q \not \equiv 0(\bmod$ $3)$ or if $q \equiv k \equiv 0(\bmod 3)$.

Now assume $q \equiv 0(\bmod 3)$, then $k \cdot i \alpha_{1}$ is an obstruction to extend the map $S \varphi(1 \wedge \varphi)$ over $W^{1} \times{ }_{\pi} M_{q}^{(3)} \supset M_{q}^{(3)}$ since $W^{1} \times{ }_{\pi} M_{q}^{(3)}$ is obtained from $I \times M_{q}^{(3)}$ identifying $0 \times M_{q}^{(3)}$ with $1 \times M_{q}^{(3)}$ by the permutation P. It follows without difficulty that $k \not \equiv 0(\bmod 3)$ if and only if $P_{*}^{1}\left(e_{1}\right.$ $\left.\otimes_{\pi} x^{3}\right) \neq 0$ for a generator x of $H_{2}\left(M_{q}\right)$. By Theorem 1, $P_{*}^{1}\left(e_{1} \otimes_{\pi} x^{3}\right)$ $=e_{0} \otimes_{\pi}(\Delta x)^{3}$. Thus $k \not \equiv 0(\bmod 3)$ if and only if $\Delta x \neq 0$, i.e., $q \not \equiv 0(\bmod 9)$. Consequently we have

Theorem 6. Let q be odd>1. If $q \not \equiv 0(\bmod 3)$ or $q \equiv 0(\bmod 9)$ then $h^{*}\left(; Z_{q}\right)$ and $\pi_{*}\left(M_{q}\right)$ are associative. If $q \equiv 0(\bmod 3)$ and $q \not \equiv 0$ $(\bmod 9)$, then we have $x(y z)-(x y) z= \pm \alpha_{1}^{* *}\left(\delta_{q} x\right)\left(\delta_{q} y\right)\left(\delta_{q} z\right)$ in $h^{*}\left(; Z_{q}\right)$ and $= \pm \alpha_{1}\left(\partial_{q} x\right)\left(\partial_{q} y\right)\left(\partial_{q} z\right)$ in $\pi_{*}\left(M_{q}.\right)$

Note that $\pi_{*}\left(M_{3}\right)$ is not associative since $\alpha_{1} \beta_{1}^{2} \beta_{2} \neq 0$.

References

[1] S. Araki and H. Toda: Multiplicative structures in mod q cohomology theories. I, II. Osaka J. Math., 2, 71-115 (1965), 3, 81-120 (1966).
[2] E. Dyer and R. K. Lashof: Homology of iterated loop spaces. Amer. J. Math., 84, 35-88 (1962).
[3] G. Nishida: Cohomology operations in iterated loop spaces. Proc. Japan Acad., 44(3), 104-109 (1968).
[4] N. E. Steenrod: Cohomology operations. Ann. Math. Study, 51 (1962).
[5] H. Toda: Composition methods in homotopy groups of spheres. Ann. Math. Study, 50 (1962).
[6] -: On iterated suspensions. I. J. Math. Kyoto Univ., 5, 87-142 (1965).
[7] -: An important relation in homotopy groups of spheres. Proc. Japan Acad., 43(9), 839-842 (1967).
[8] -: On iterated suspensions. III. J. Math. Kyoto Univ. (to appear).
[9] N. Yamamoto: Algebra of stable homotopy of Moore space. J. Math Osaka City Univ., 14, 45-67 (1963).

