80. On Nuclear Spaces with Fundamental System of Bounded Sets. I

By Shunsuke FUNAKOSI

(Comm. by Kinjirô KUNUGI, M. J. A., May 13, 1968)

We consider a nuclear space with a fundamental system of bounded sets. In this paper, we consider the open mapping and closed graph theorems in the nuclear space.

For nuclear spaces and its related notion see [8]. Most of the definitions and notations of locally convex spaces are taken from N. Bourbaki [1] and T. Husain [4].

1. In this section, we consider under what conditions nuclear space is the space with the open mapping and closed graph theorems.

Definition 1. Let E be a locally convex vector space and E' its dual.

(1) ew*-topology is defined to be the finest topology on E' which coincides with $\sigma(E', E)$ on each equicontinuous set of E'.

(2) p-topology is the \mathfrak{S} -topology on E' where \mathfrak{S} consists of all precompact subsets of E.

(3) E is called a S-space if on E', $ew^* = p$.

(4) E is called a B-complete if a linear continuous and almost open mapping of E onto any locally convex vector space F is open.

(5) E is called a $B(\mathcal{I})$ -space if it satisfies the following statement; For each barrelled space F, a linear and continuous mapping of E onto F is open.

Let E and F be normed spaces, U and V their closed unit balls respectively. A continuous linear mapping T of E in F is called a nuclear mapping if there exists a continuous linear form $a_n \in E'$ and $y_n \in F$ such that the following holds;

$$Tx = \sum_{N} < x, a_{n} > y_{n}$$
 for $x \in E$

and

$$\sum_{N} P_{U^{0}}(a_{n})P_{V}(y_{n}) < +\infty.$$

For each nuclear mapping T define the norm:

$$\nu(T) = \inf \left\{ \sum_{N} P_U(a_n) P_V(y_n) \right\}.$$

Let $\mathcal{M}(E, F)$ be the set of all nuclear mappings of E into F, we introduce a norm in $\mathcal{M}(E, F)$ by $\nu(T)$. Let $\mathcal{L}(E, F)$ be the set of all continuous linear mappings of E into F, let $\mathcal{A}(E, F)$ be the set of all mappings $t \in \mathcal{L}(E, F)$ such that t(E) is a finite dimensional subspace

Nuclear Spaces. I

No. 5]

of F, then we have the following

Proposition 1. $\mathcal{A}(E, F)$ is a dense subspace in $\mathcal{N}(E, F)$.

Proof. For any $T \in \mathcal{A}(E, F)$, it has the form

$$Tx = \sum_{n=1}^{n} \langle x, a_n \rangle y_n, \quad a_1, \cdots, a_k \in E, \quad y_1, \cdots, y_k \in F.$$

Therefore $\mathcal{A}(E, \mathbf{F})$ is a linear subspace of $\mathcal{N}(E, F)$. Next, for any $T \in \mathcal{N}(E, F)$ there exists a continuous linear form $a_n \in E$ and elements $y_n \in F$ such that

$$Tx = \sum_{N} \langle x, a_{n} \rangle y_{n}$$
 for $x \in E$,

and

$$\sum_{N} P_{U^{0}}(a_{n})P_{V}(y_{n}) < +\infty.$$

Let $\mathcal{T}(N)$ be the family of all finite subsets of N, then for arbitrary $\delta > 0$ there exists $N_0 \in \mathcal{T}(N)$ such that

$$\sum_{N \setminus N_0} P_U(a_n) P_V(y_n) \leq \delta.$$

Now we define the mapping
$$T_N \in \mathcal{A}(E, F)$$
 by $T_N x = \sum_N \langle x, a_n \rangle y_n.$

Then there exists N_0 such that

$$(T - T_N) \leq \delta$$
 for all $N \geq N_0 (\in \mathcal{G}(N)).$

This implies

$$\nu - \lim_{N} T_{N} = T.$$

The proof is complete.

Thus we have immediately the following

Corollary. Each nuclear mapping is precompact.

Let E be a locally convex space and U any closed and absolutely convex neighborhood of the origin in E. Let

$$P_U(x) = \inf \{\rho > 0; x \in \rho U\}$$
 for $x \in E$,

and

 $E(U) = E / \{x \in E; P_U(x) = 0\}.$

Then we introduce a topology on E(U) by the norm

$$||x(U)|| = P_U(x)$$
 for $x(U) \in E(U)$

where x(U) corresponds to $x \in E$ in a natural way. For each closed and absolutely convex bounded subset A in locally convex space E, we define a linear subspace E(A) of E by

 $E(A) = \{x \in E ; x \in fA \text{ for any } \rho > 0\},\$ and topology of E(A) is introduced by the norm

 $P_A(x) = \inf \{\rho > 0; x \in \rho A\}$ for $x \in E(A)$.

The following proposition is an important assertion.

Proposition 2. Any bounded subset of nuclear space E is precompact.

Proof. We can assume without loss of generality that each

bounded set is closed and absolutely convex bounded set, because there exists a closed and absolutely convex bounded set which contains a bounded set. In the nuclear space E, for any closed and absolutely convex neighborhood of the origin there exist a closed and absolutely convex bounded set such that the canonical mapping from the normed space E(A) in the normed space E(U) is nuclear. By Proposition 1, this canonical mapping is a precompact. Therefore, if we denote

$$A(U) = \{x(U) \in E(U) ; x \in A\},\$$

then A(U) is precompact. There exists finite elements x_1, x_2, \dots, x_s of E such that

$$A(U) \subseteq \bigcup_{n=1}^{s} \{x_{n}(U) + U(U)\}, \quad U(U) = \{x(U) \in E(U) ; x \in U\}.$$

This implies $A \subseteq \bigcup_{n=1}^{\circ} \{x_n + U\}$. Therefore A is a precompact subset.

Definition 2. Let E be a locally convex vector space. Let \mathcal{B} denote a collection of u-compact subset E. The k-extension $k(u, \mathcal{B})$ of the topology u is defined as follows; A set V is $k(u, \mathcal{B})$ -open if and only if $V \cap C$ is open in the relative u-topology of C for each C in \mathcal{B} .

Proposition 3. A nuclear space E is a S-space if on its dual E^{\prime} , $ew^* = \beta$.

Proof. By Proposition 2, and the hypothesis, $\beta = p = ew^*$ on E'. Therefore E is a S-space. The following Lemma is due to [3].

Lemma 1. Let E_u be a metrizable topological vector and \mathcal{B} the collection of all u-compact subset of E_u . Then $u = k(u, \mathcal{B})$ is a vector topology.

Theorem 1. Let E be a nuclear space with a countable fundamental system of u-bounded set. Then E is a S-space.

Proof. By Definition 1. (1) and Definition 2, $ew^* = k(\sigma, \mathcal{B}') = k(\beta, \mathcal{B}')$, where \mathcal{B}' is the collection of all $\sigma(E', E)$ -closed convex equicontinuous sets of E'. Let \mathcal{B} denote the class of all β -compact convex sets in E'. Each β -compact convex set is $\sigma(E', E)$ -compact, then $k(\beta, \mathcal{B}) > k(\beta, \mathcal{B}')$. Therefore we have

$$k(\beta, \mathcal{B}) \succ k(\beta, \mathcal{B}') = ew^* \succ \beta.$$

But E_u contains a countable fundamental system of *u*-bounded subsets by hypothesis, hence β is metrizable, by Lemma 1,

$$\beta = k(\beta, \mathcal{B}) = ew^*.$$

This shows that E_u is a S-space by proposition 3.

Since a complete S-space is B-complete [3], we have the following

Corollary. The complete nuclear space with a countable fundamental system of u-bounded set is B-complete.

Definition 3. Let E be a locally convex space and E' its dual.

(1) If only all countable strong bounded subset of E are equi-

continuous, then E is called a σ -quasibarrelled.

(2) Let E be a σ -quasibarrelled, if there exists a countable funda-

mental system of bounded subset in E, then E is called a dualmetric. The following Lemma is due to [5].

Lemma 2. Let E be a metrizable locally convex space and E' its dual. Then E', endowed with any locally convex topology finer than $\sigma(E', E)$ and coarser than $\tau(E', E)$, is a $B(\mathcal{T})$ -space.

In the second paper [2], we shall prove that any nuclear dualmetric space which is quasicomplete is a Mackey space.

Theorem 2. Let E be a nuclear dualmetric space which is quasicomplete, then E is a $B(\mathcal{T})$ -space.

Proof. By Mackey's theorem, bounded sets under all locally convex topologies in the band $\tau(E, E') > u > \sigma(E, E')$ are the same. Since E is a nuclear space, an arbitrary bounded subset is a precompact by Proposition 2. On the other hand, E is a quasicomplete, therefore, $\sigma(E, E')$ -bounded sets are relatively $\sigma(E, E')$ -compact and $\beta = \tau(E', E)$ on E'. Clearly $E'^{\beta'} = E'^{\tau'} = E$ where $\beta = \beta(E', E)$, $\tau = \tau(E', E)$ and E'^{β} is metrizable by hypothesis. Moreover, E is a Mackey space (for detail see [2]). Hence by Lemma 2, E is a $B(\mathcal{I})$ space.

J. L. Kelley has studied hypercomplete spaces. He proved that a topological vector space E is hypercomplete if and only if each ew^* -closed convex circled subset of E' is $\sigma(E', E)$ -closed. On the other hand T. Husain [3] proved the following theorem. Let E be a complete S-space. For a convex set M' in E' to be $\sigma(E', E)$ -closed it is necessary and sufficient that $M' \cap U^0$ be $\sigma(E', E)$ -closed for each neighborhood U of 0 in E. Therefore, it is clear that a complete S-space is hypercomplete. Thus we have

Corollary. A nuclear dual metric space E which is quasicomplete is hypercomplete space.

2. The purpose of this section is to study that the open mapping and closed graph theorems on a nuclear dualmetric space. By using the result Theorem 2 of Section 1, we have immediately the following

Theorem 3. Let F be a barrelled space, and E a nuclear dualmetric space which is quasicomplete, then

(a) A linear and continuous mapping f of E onto F is open.

(b) A linear mapping g of F into E with the closed graph is continuous.

Remark. A linear mapping f of dualmetric space into any locally convex space is continuous if and only if its restriction of the fundamental system of bounded set on B_n , is continuous (see [6, p. 401]). Dualmetric space is a (DF)-space (see [2]).

No. 5]

Moreover, we can prove the following

Theorem 4. Let E be a nuclear dualmetric space and F a locally convex vector space with Baire's property, then

- (a) Each linear mapping of E onto F is almost open.
- (b) Each linear mapping of F into E is almost continuous.

Proof. (a) Since E is a dualmetric, there is a countable fundamental system of bounded subset $B(E) = \{B_n; n = 1, 2, \dots\}$ in E. Also E is a dualnuclear (see [8]), i.e., for arbitrary subset $B_n \in B(E)$ exist $B_m \in B(E)$ with $B_n \prec B_m(\prec;$ see [8]), and the canonical mapping; $B_n \rightarrow B_m$ is nuclear. Each nuclear mapping is precompact, so B_n is precompact and separable subset of normed space $E(B_m)$, where $E(B_m) = \{x \in E; x \in \rho B_m \text{ for every } \rho > 0\}$. We can define Norm on $E(B_m)$ by $P_{B_m}(x) = \inf \{\rho > 0; x \in \rho B\}$ for $x \in E(B_m)$. Moreover the identical mapping from $E(B_n)$ to E is continuous, therefore B_n is separable subset of E. We can choose double sequence $\{x_{m,n}\}$ which is dence in E. Now we replace the double sequence $\{x_{m,n}\}$ with $\{x_n\}_{n \in N}$. Let U and V be circled neighborhood of 0 in E such that $V + V \subset U$. Then clearly

$$\bigcup_{n \ge 1} \{x_n + V\} = E \text{ and } F = f(E) = \bigcup_{n \ge 1} \{f(x_n + V) = \bigcup_{n \ge 1} \{f(x_n) + f(V)\}.$$

Since F has a Baire's property, at least for one n, $f(x_n) + f(V) = f(x_n) + \overline{f(V)}$ has an interior point. Since $\overline{f(V)}$ and $f(x_n) + \overline{f(V)}$ are homeomorphic, $\overline{f(V)}$ has an interior point y. Since V is a circled neighborhood, $\overline{f(V)}$ is a circled, thus, 0 = y - y is an interior point of

 $\overline{f(V)} + \overline{f(V)} \subset \overline{f(V) + f(V)} = \overline{f(V+V)} \subset \overline{f(U)}.$

Hence, f is almost open mapping.

(b) This part follows clearly from (a).

Combining this theorem with Corollary of Theorem 1, we have the following

Corollary. Let E be a nuclear dual metric space which is quasicomplete and F a locally convex vector space with Baire's property, then each Linear continuous mapping E onto F is open.

References

- [1] N. Bourbaki: Espaces Vectoriels Topologiques. Harmann Paris (1953).
- [2] S. Funakosi: On nuclear space with fundamental system of bounded sets.
 II. Proc. Japan Acad. (1968) (to appear).
- [3] T. Husain: S-space and the open mapping theorem. Pacific J. Math., 12, 253-271 (1962).
- [4] —: The Open Mapping and Closed Graph Theorems in Topological Vector Spaces. Oxford Mathematical Monographs (1965).
- [5] —: Locally convex spaces with the $B(\mathcal{I})$ -property. Math. Annalen, **146**, 413-422 (1962).

No. 5]

- [6] G. Köthe: Topologische lineare Räume. I. Springer-Verlag, Berlin (1960).
- [7] J. L. Kelley: Hypercomplete linear topological spaces. Michigan Math. J., 5, 235-246 (1958).
- [8] A. Pietsch: Nukleare lokalkonvexe Räume. Akademie-Verlag, Berlin (1965).