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On Submanifolds in Spaces of Constant
and Constant Holomorphic Curvatures

By Minoru KOBAYASHI
Department of Mathematics, Josai University

(Comm. by Kinjir8 KUNU(I, M. ..., May 13, 1968)

1. Fundamental formulas. Let M and /r be two Riemannian
manifolds of dimension n and n/m respectively, with M immersed
in M. We shall denote (, the Riemannian metric of M and V the
Riemannian connection of M associated with this metric. Let us also
denote (,) the induced Riemannian metric of M. Let V(M) be the
ring of the differentiable vector fields on M, NV(M) be the collection
of normal vector fields to M defined on a proper open subset of M,
which is spanned by mutually orthogonal m unit normal vector fields
C, ..., C.

Let p V(M) /NV(M)V(M)
be a natural projection.

For X in V(M), we put
(.) zC- -AX. (i- , ..., m)

Proposition 1o1 For X, Y in V(M), we have

(1.2) xY--xY/ Y, (AX, YC where /zY in V(M).
i=l

(1.3) / is a Riemannian connection of M associated with the induced
Riemannian metric and A are self-adjoint (1, 1) type tensors.

Proof. We may set

(1.4) xY-xY+ Y, fC.
Then, since (Y, C,)-0, differentiating covariantly, we get

(1.5) (xY,
Substituting (1.4) into (1.5) leads to
(1.6) f-(AX,. Y.
The properties of (1.3) can be easily checked. Q.E.D.

Let {E., ..., En} be an orthonormal basis on an open subset of M.
We put

(1.7) H- E (tr A)C
i=l

where tr denotes the trace, tr A- , (AE,, E,). H is called the mean
a=l

curvature vector field of M. A submaniold M is called minimal if
trA-0, totally geodesic if A-0 and totally umbilical if (AX, X
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(AY, Y} for all X and Y in V(M) with X Y II.
Proposition 1.2. For X, Y, W, and U in V(M) we have

pR(W, X)Y=r(W, X)Y + F, {(AW, Y}AX-(AX, Y}AW}
=1

(1.9)

(I.I0)

(1.11)

(1.12)

R(U, Y, W, X)=_(i(W, X)Y, U)

=r(U, Y, W, Z)+ , {<AW, Y}<AX, U>-<AX, Y><AW, U>}
t=1

R(Y, W)=_ E R(E., Y, W, E.)
a=l

=r(Y, W)-<V-H, Y>.- F. <AY, E><AW, E>
i:la=l

R(Y)=_R(Y, Y)

=flY)+ E(tr A)<AY, Y>-- F. F, (AY, E>
t=l i=la=l

R =_. . R(E)

=r+ E (tr A)- E <AE,, E>
i=1 i=1

where/(W, X)Y and r(W, X)Y are the curvature tensor fields of/
and M respectively, r(Y, W) is the Ricci curvature and r is the scalar
curvature of M. We also put r(Y)-r(Y, Y).

Proof. Differentiating covariantly (1.2) we have

(1.13)

Hence

(1.i4)

Thus

gwgxY gwgxY+ {<AW, gxY}C, / w(<AX, Y})C

+ <A,X, Y>FC}.

pwxY=FwFxY--E <AX, Y>AW.
i=l

pR-(W, X)Y=p(VwVxY--VxVwY--[w,x]Y

=r(W, X)Y+ ((A,W, Y)AX-(A,X, YA,W}

which is the equation of Gauss.
For the proof of (1.10), we have

(1.15) R(Y, W)= r(E., Y, W, E.)+ . {<A,W, Y><AE., E>
a=l t=la=l

--<AE, Y><AE, W>}

=flY, W)+ <AW, Y>(tr AJ
i=l-- <AE=, Y><AE, W>.

i=la=l

On the other hand, differentiating (1.7) and making an inner product

H with Y, we get
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(1.16) (ZwH, Y--- F, (AW, Y(tr A0.
Substituting this into (1.15), we have the required (1.10).

Theorem 1.3. Let M be a minimal submanffold. Then

(1.17) R(Y, W)-r(Y, W)- (AY, E)(AW, E.)
i=la=l

(1.18) R(Y)<_r(Y)
and the equality occurs if and only if M is totally geodesic.

Q.E.D.

(2.1) R-(W, )Y--k{(X, Y}W-(W, Y}X}
where X, Y, W are in V(M) and k is a constant.

Lemma 2.1. For Y and W in V(M), we have

(2.2) (E., Y}(E., W}-(Y, W}.
a=l

Proposition 2.2. Let M be a submanifold in a space of constant
eurvature. Then for X, Y, W, and U in
(2.3) "(W, X)Y--k((X, Y}W-(W,-- {(AW, Y)AX-(AX, Y}AW}

(2.4) r(U, Y, W, X)-k{(X, Y)(W, US-(W, YS(X, U}}
--, {(AW, Y}(AX, U}-(AX, Y}(AW, U}}

i=1

(2.5) f(Y, W)-(k-kn)(W, Y}-E (AW, Y}(tr A)

t---la=l

(2.6) r(Y)=(k-kn)

(2.7) r= kn- kn- (tr A) + , , (AE, E}.
i=1 =1

Proof. For the proof of (2.5), we have

=(k-kn)<W, Y>- <A,W, Y>(tr A,)+ , <A,E., Y><A,E., W}
I=I =i =I

by the above lemma. Q.E.D.
Proposition 2.3. Let M be a submanifold in a space of constant

curvature. Then

(2.8) K-k-F,, <AX, Y)’+ E <AX, X><AY, Y>
=1 =1

2. Submanifolds in a space of constant curvature. Let M-- be a
space of constant curvature. Then the curvature tensor field of M is
given by
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where K is the sectional curvature of M spanned by an orthonormal
basis {X, Y}.

Proof. It is clear from the definition of the sectional curvature
K-r(X, Y,.X, Y). Q.E.D.

Theorem 2.4. Let M be a minimal submanifold in a space of
constant curvature. Then
(2.9) r(Y)>=k(1-n)l Y
(2.10) r>=k(1-n)n
and the both equalities occur if and only if M is totally geodesic.

Theorem 2.5. Let M be a totally umbilical submanifold in a
space of constant curvature. Then
(2.11) r>=(1-n)nK
and the equality occurs if and only if M is totally geodesic.

Proof. Since M is totally umbilical, (2.9) reduces to

(2.12) K-k-F. (A,X, Y}+ F, (A,X, X) for (X, Y}=O.
i=l =i

We t
(2.13) a- E <A,X, X}.
Then, sinee F, (tr A)=na, (2.7) becomes

(2.14) r-kn--kn-na+ , (A,E,, Ea}.
i=l

Since (E., E}=0 for a4: fl, we get

(2.15) (A,E, Ea}-k-g+a.
i=l

Hence, (A,E, Ea}-n(n 1)(k-K+ a) + na.
=1

Thus, substituting this into (2.14) we have
(2.16) n(n--1)a-r+(n-1)nK.

Since a>=0, we get r>=(1-n)nK. Q.E.D.
Remark. If M is a totally umbilical submanifold in a Rieman-

nian manifold M with the sectional curvature K, then

R-r<=n(n-1)(K-K).
3. Submanifolds in a space of constant holomorphic curvature.

Let M be a space of constant holomorphic curvature. Then the cur-
vature tensor fields of M is given by

(a.1) R--(W, X)Y- ki(X, Y)W-(W, ?}X+ (JX,
-(JW, Y}JX-2(JW, X}JY}

where X, , and W are in V(M), k is a constant and J is the Kiihler
structure of M. We may assume the Riemannian metric to be Her-
mitian.

For X in V(M), we put
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(3.2.) JX- TX+NX
where TX is in V(M) and NX is in NV(M).

A submanifold M in an almost complex manifold is called invari-
ant if JX-TX, anti-holomorphic if JX=NX.

Proposition :.1. Let M be a submanifold in a space o constant
holomorphic curvature. Then, or X, Y, W, and U in V(M)
(3.3) r(W, X)Y-k((X, Y}W-(W, Y}X+(TX, Y}TW

--(TW, YTX-2(TW, XTY}

--,((AW, YAX-(AX, YAW}
=1

(3.4) r(U, Y, W, X)=k((X, Y}(W, U-(W, Y}(X, V
+(TX, Y}(TW, U}-2(TW, X}(TX, V}}

-F,{(AW, Y}(AX, U}-(AX, Y}(AW, V}}

(3.5) r(Y, W)-k(1-n)(W, Y-3k(TW, TY-(AW, Y} (tr A)
=1

+ , F,(AE,, Y} (AE,, W}
i=l a=l

(3.6) r(Y)-(k-kn) Y -3k ITY - ](tr A)+ , (AE., E}
i=1 =1 a,=l

and for an orthonormal basis {X, Y},
(3.7) K- k(1E 3(TY, X>)- ,(AX,

i=l =i

Proof. For the proof of (3.5), we use the fact

(TY, E}(TW, E}-(TY, TW
a=l

and the identity (JX, Y}--(X, JY}. Q.E.D.
Theorem :.2. Let M be a totally geodesic submanifold in a space

of constant holomorphic curvature. Then for Y with Y I= b, we have
(3.9) (k--kn)b_r(Y)>=(-2k-kn)b for k0
(3.10) (k-kn)b<=r(Y)<=(-2k-kn)b or k0
and the equality r(Y)-bk-bkn occurs if and only if M is anti-holo-
morphic and r(Y)=--2bk--bkn occurs if and only if M is invariant.

Proof. Since M is totally geodesic, (3.6) reduces to
(3.11) r(Y)=bk-bkn-3k TYI .
Since
M is invariant, then YI-(JY, JY}=[TYI ’, which implies r(Y)
=-2bk-bkn, and vice versa. Q.E.D.

Theorem :.:. Notations being as above. Then we have
(3.12) kn-kn>=r>= -2kn-kn or k0
(3.13) kn-kn<=r<=--2kn-kn or k0.
Especially, if (TX, TY}--O or all orthogonal pairs {X, Y} then the
equality r-kn-kn occurs if and only if M is anti-holomorphic,
r=-2kn-kn occurs if and only if M is invariant.
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Proof. If M is invariant, then TEI--I, which gives r
2kn- kn. Convercely, if r- 2kn-kn, then TEII- 1. Hence,

or X , fE
(3.15) TX -F, f(TE,, TE}+ ff(TE, TE}

a=l a,p=l

that is M is invariant. Q.E.D.
As was proved in Theorem 2.6, we can state the ollowing

Theorem 3.4.
Theorem 3.4. Let M be a totally umbilical submanifold in a

space o constant holomorphic curvature. Then
(3.16) r>=n(1-n)K
and the equality occurs if and only if M is totally geodesic.

Proof. Since M is totally umbilical, (5.8) reduces to

(3.17) K=k(I+3(TY, X})- , (AX, Y}+ F, (AX, X}
=I =I

Thus pplying the similar calculations used in Theorem 2.5 we have
the required (3.16).

ReFerences

[1] M. Ako: Submanifolds in Fubinian manifolds. K6dai Math. Sem. Rep.,
19, 103-128 (1967).

[2] S. IIelgason: Differential Geometry and Symmetric Spaces. Academic
Press, New York (1962).

[3] B. O’Neill: Isotropic and Kiihler immersions. Canadian J. Math., 17,
907-915 (1965).

[4] B. Smith: Differential geometry of complex hypersurfaces. Thesis, Brown
Univ., June (1966).

5 K. rano: Differential Geometry on Complex and Almost Complex Spaces.
Pergamon Press (1965).


