77. On Submanifolds in Spaces of Constant and Constant Holomorphic Curvatures

By Minoru Kobayashi
Department of Mathematics, Josai University
(Comm. by Kinjirô Kunugr, m. J. A., May 13, 1968)

1. Fundamental formulas. Let M and \bar{M} be two Riemannian manifolds of dimension n and $n+m$ respectively, with M immersed in \bar{M}. We shall denote \langle,$\rangle the Riemannian metric of \bar{M}$ and $\bar{\nabla}$ the Riemannian connection of \bar{M} associated with this metric. Let us also denote \langle,$\rangle the induced Riemannian metric of M$. Let $V(M)$ be the ring of the differentiable vector fields on $M, N V(M)$ be the collection of normal vector fields to M defined on a proper open subset of M, which is spanned by mutually orthogonal m unit normal vector fields C_{1}, \cdots, C_{m}.

Let

$$
p: \quad V(M)+N V(M) \rightarrow V(M)
$$

be a natural projection.
For X in $V(M)$, we put

$$
\begin{equation*}
p \bar{\nabla}_{X} C_{i}=-A_{i} X . \quad(i=1, \cdots, m) \tag{1.1}
\end{equation*}
$$

Proposition 1.1. For X, Y in $V(M)$, we have
(1.2) $\bar{\nabla}_{X} Y=\nabla_{X} Y+\sum_{i=1}^{m}\left\langle A_{i} X, Y\right\rangle C_{i}$ where $\nabla_{X} Y$ in $V(M)$.
(1.3) $\quad \nabla$ is a Riemannian connection of M associated with the induced Riemannian metric and A_{i} are self-adjoint $(1,1)$ type tensors.

Proof. We may set

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+\sum_{i=1}^{m} f_{i} C_{i} \tag{1.4}
\end{equation*}
$$

Then, since $\left\langle Y, C_{i}\right\rangle=0$, differentiating covariantly, we get

$$
\begin{equation*}
\left\langle\bar{\nabla}_{X} Y, C_{i}\right\rangle+\left\langle Y, \bar{\nabla}_{X} C_{i}\right\rangle=0 . \tag{1.5}
\end{equation*}
$$

Substituting (1.4) into (1.5) leads to

$$
\begin{equation*}
f_{i}=\left\langle A_{i} X, Y\right\rangle . \tag{1.6}
\end{equation*}
$$

The properties of (1.3) can be easily checked.
Q.E.D.

Let $\left\{E_{1}, \cdots, E_{n}\right\}$ be an orthonormal basis on an open subset of M. We put

$$
\begin{equation*}
H=\sum_{i=1}^{m}\left(\operatorname{tr} A_{i}\right) C_{i} \tag{1.7}
\end{equation*}
$$

where tr denotes the trace, $\operatorname{tr} A_{i}=\sum_{\alpha=1}^{n}\left\langle A_{i} E_{\alpha}, E_{\alpha}\right\rangle . \quad H$ is called the mean curvature vector field of M. A submanifold M is called minimal if $\operatorname{tr} A_{i}=0$, totally geodesic if $A_{i}=0$ and totally umbilical if $\left\langle A_{i} X, X\right\rangle$
$=\left\langle A_{i} Y, Y\right\rangle$ for all X and Y in $V(M)$ with $\|X\|=\|Y\|$.
Proposition 1.2. For X, Y, W, and U in $V(M)$ we have
(1.8) $\quad p R(W, X) Y=r(W, X) Y+\sum_{i=1}^{m}\left\{\left\langle A_{i} W, Y\right\rangle A_{i} X-\left\langle A_{i} X, Y\right\rangle A_{i} W\right\}$
(1.9) $R(U, Y, W, X) \equiv\langle\ddot{R}(W, X) Y, U\rangle$

$$
=r(U, Y, W, X)+\sum_{i=1}^{m}\left\{\left\langle A_{i} W, Y\right\rangle\left\langle A_{i} X, U\right\rangle-\left\langle A_{i} X, Y\right\rangle\left\langle A_{i} W, U\right\rangle\right\}
$$

$$
\begin{align*}
& R(Y, W) \equiv \sum_{\alpha=1}^{n} R\left(E_{\alpha}, Y, W, E_{\alpha}\right) \tag{1.10}\\
& =r(Y, W)-\left\langle\bar{\nabla}_{W} H, Y\right\rangle-\sum_{i=1}^{m} \sum_{\alpha=1}^{n}\left\langle A_{i} Y, E_{\alpha}\right\rangle\left\langle A_{i} W, E_{\alpha}\right\rangle \\
& \quad R(Y) \equiv R(Y, Y) \tag{1.11}\\
& \quad=r(Y)+\sum_{i=1}^{m}\left(\operatorname{tr} A_{i}\right)\left\langle A_{i} Y, Y\right\rangle-\sum_{i=1}^{m} \sum_{\alpha=1}^{n}\left\langle A_{i} Y, E_{\alpha}\right\rangle^{2}
\end{align*}
$$

$$
\begin{equation*}
R \equiv \sum_{\beta=1}^{m} R\left(E_{\beta}\right) \tag{1.12}
\end{equation*}
$$

$$
=r+\sum_{i=1}^{m}\left(\operatorname{tr} A_{i}\right)^{2}-\sum_{i=1}^{m} \sum_{\alpha, \beta=1}^{n}\left\langle A_{i} E_{\alpha}, E_{\beta}\right\rangle^{2}
$$

where $\bar{R}(W, X) Y$ and $r(W, X) Y$ are the curvature tensor fields of \bar{M} and M respectively, $r(Y, W)$ is the Ricci curvature and r is the scalar curvature of M. We also put $\mathrm{r}(Y)=r(Y, Y)$.

Proof. Differentiating covariantly (1.2) we have

$$
\begin{align*}
\bar{\nabla}_{W} \bar{\nabla}_{X} Y=\nabla_{W} \nabla_{X} Y & +\sum_{i=1}^{m}\left\{\left\langle A_{i} W, \nabla_{X} Y\right\rangle C_{i}+\bar{\nabla}_{W}\left(\left\langle A_{i} X, Y\right\rangle\right) C_{i}\right. \tag{1.13}\\
& \left.+\left\langle A_{i} X, Y\right\rangle \bar{\nabla}_{W} C_{i}\right\} .
\end{align*}
$$

Hence

$$
\begin{equation*}
p \bar{\nabla}_{W} \bar{\nabla}_{X} Y=\nabla_{W} \nabla_{X} Y-\sum_{i=1}^{m}\left\langle A_{i} X, Y\right\rangle A_{i} W \tag{1.14}
\end{equation*}
$$

Thus

$$
\begin{aligned}
p \bar{R}(W, X) Y & =p\left(\bar{\nabla}_{W} \bar{\nabla}_{X} Y-\bar{\nabla}_{X} \bar{\nabla}_{W} Y-\bar{\nabla}_{[W, X]} Y\right. \\
& =r(W, X) Y+\sum_{i=1}^{m}\left\{\left\langle A_{i} W, Y\right) A_{i} X-\left\langle A_{i} X, Y\right\rangle A_{i} W\right\}
\end{aligned}
$$

which is the equation of Gauss.
For the proof of (1.10), we have

$$
\begin{align*}
R(Y, W)= & \sum_{\alpha=1}^{n} r\left(E_{\alpha}, Y, W, E_{\alpha}\right)+\sum_{i=1}^{m} \sum_{\alpha=1}^{n}\left\{\left\langle A_{i} W, Y\right\rangle\left\langle A_{i} E_{\alpha}, E_{\alpha}\right\rangle\right. \tag{1.15}\\
& \left.-\left\langle A_{i} E_{\alpha}, Y\right\rangle\left\langle A_{i} E_{\alpha}, W\right\rangle\right\} \\
= & r(Y, W)+\sum_{i=1}^{m}\left\langle A_{i} W, Y\right\rangle\left(\operatorname{tr} A_{i}\right) \\
& -\sum_{i=1}^{m} \sum_{\alpha=1}^{n}\left\langle A_{i} E_{\alpha}, Y\right\rangle\left\langle A_{i} E_{\alpha}, W\right\rangle .
\end{align*}
$$

On the other hand, differentiating (1.7) and making an inner product $\bar{\nabla}_{W} H$ with Y, we get

$$
\begin{equation*}
\left\langle\bar{\nabla}_{w} H, Y\right\rangle=-\sum_{i=1}^{m}\left\langle A_{i} W, Y\right\rangle\left(\operatorname{tr} A_{i}\right) . \tag{1.16}
\end{equation*}
$$

Substituting this into (1.15), we have the required (1.10). Q.E.D.
Theorem 1.3. Let M be a minimal submanifold. Then

$$
\begin{gather*}
R(Y, W)=r(Y, W)-\sum_{i=1}^{m} \sum_{\alpha=1}^{n}\left\langle A_{i} Y, E_{\alpha}\right\rangle\left\langle A_{i} W, E_{\alpha}\right\rangle \tag{1.17}\\
R(Y) \leqq r(Y) \tag{1.18}
\end{gather*}
$$

and the equality occurs if and only if M is totally geodesic.
2. Submanifolds in a space of constant curvature. Let \bar{M} be a space of constant curvature. Then the curvature tensor field of \bar{M} is given by

$$
\begin{equation*}
\bar{R}(\bar{W}, \bar{X}) \bar{Y}=k\{\langle\bar{X}, \bar{Y}\rangle \bar{W}-\langle\bar{W}, \bar{Y}\rangle \bar{X}\} \tag{2.1}
\end{equation*}
$$

where $\bar{X}, \bar{Y}, \bar{W}$ are in $V(\bar{M})$ and k is a constant.
Lemma 2.1. For Y and W in $V(M)$, we have

$$
\begin{equation*}
\sum_{\alpha=1}^{n}\left\langle E_{\alpha}, Y\right\rangle\left\langle E_{\alpha}, W\right\rangle=\langle Y, W\rangle . \tag{2.2}
\end{equation*}
$$

Proposition 2.2. Let M be a submanifold in a space of constant curvature. Then for X, Y, W, and U in $V(M)$

$$
\begin{align*}
r(W, X) Y= & k\{\langle X, Y\rangle W-\langle W, Y\rangle X\} \tag{2.3}\\
& -\sum_{i=1}^{m}\left\langle\left\langle A_{i} W, Y\right\rangle A_{i} X-\left\langle A_{i} X, Y\right\rangle A_{i} W\right\} \\
r(U, Y, W, X)= & k\{\langle X, Y\rangle\langle W, U\rangle-\langle W, Y\rangle\langle X, U\rangle\} \tag{2.4}\\
& -\sum_{i=1}^{m}\left\{\left\langle A_{i} W, Y\right\rangle\left\langle A_{i} X, U\right\rangle-\left\langle A_{i} X, Y\right\rangle\left\langle A_{i} W, U\right\rangle\right\} \\
r(Y, W)= & (k-k n)\langle W, Y\rangle-\sum_{i=1}^{m}\left\langle A_{i} W, Y\right\rangle\left(\operatorname{tr} A_{i}\right) \tag{2.5}\\
& +\sum_{i=1}^{m} \sum_{\alpha=1}^{n}\left\langle A_{i} E_{\alpha}, Y\right\rangle\left\langle A_{i} E_{\alpha}, W\right\rangle
\end{align*}
$$

$$
\begin{equation*}
r(Y)=(k-k n)\|Y\|^{2}-\sum_{i=1}^{m}\left(\operatorname{tr} A_{i}\right)\left\langle A_{i} Y, Y\right\rangle+\sum_{i=1}^{m} \sum_{\alpha=1}^{n}\left\langle A_{i} E_{\alpha}, Y\right\rangle^{2} \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
r=k n-k n^{2}-\sum_{i=1}^{m}\left(\operatorname{tr} A_{i}\right)^{2}+\sum_{i=1}^{m} \sum_{\alpha, \beta=1}^{n}\left\langle A_{i} E_{\alpha}, E_{\beta}\right\rangle^{2} . \tag{2.7}
\end{equation*}
$$

Proof. For the proof of (2.5), we have

$$
\begin{aligned}
& r(Y, W)=k \sum_{\alpha=1}^{n}\left\{\left\langle E_{\alpha}, Y\right\rangle\left\langle E_{\alpha}, W\right\rangle-\langle W, Y\rangle\left\langle E_{\alpha}, E_{\alpha}\right\rangle\right\} \\
& \quad-\sum_{i=1}^{m} \sum_{\alpha=1}^{n}\left\{\left\langle A_{i} W, Y\right\rangle\left\langle A_{i} E_{\alpha}, E_{\alpha}\right\rangle-\left\langle A_{i} E_{\alpha}, Y\right\rangle\left\langle A_{i} W, E_{\alpha}\right\rangle\right\} \\
& =(k-k n)\langle W, Y\rangle-\sum_{i=1}^{m}\left\langle A_{i} W, Y\right\rangle\left(\operatorname{tr} A_{i}\right)+\sum_{i=1}^{m} \sum_{\alpha=1}^{n}\left\langle A_{i} E_{\alpha}, Y\right\rangle\left\langle A_{i} E_{\alpha}, W\right\rangle
\end{aligned}
$$

by the above lemma.
Proposition 2.3. Let M be a submanifold in a space of constant curvature. Then

$$
\begin{equation*}
K=k-\sum_{i=1}^{m}\left\langle A_{i} X, Y\right\rangle^{2}+\sum_{i=1}^{m}\left\langle A_{i} X, X\right\rangle\left\langle A_{i} Y, Y\right\rangle \tag{2.8}
\end{equation*}
$$

where K is the sectional curvature of M spanned by an orthonormal basis $\{X, Y\}$.

Proof. It is clear from the definition of the sectional curvature

$$
K=r(X, Y, X, Y) . \quad \text { Q.E.D. }
$$

Theorem 2.4. Let M be a minimal submanifold in a space of constant curvature. Then

$$
\begin{gather*}
r(Y) \geqq k(1-n)\|Y\|^{2} \tag{2.9}\\
r \geqq k(1-n) n \tag{2.10}
\end{gather*}
$$

and the both equalities occur if and only if M is totally geodesic.
Theorem 2.5. Let M be a totally umbilical submanifold in a space of constant curvature. Then

$$
\begin{equation*}
r \geqq(1-n) n K \tag{2.11}
\end{equation*}
$$

and the equality occurs if and only if M is totally geodesic.
Proof. Since M is totally umbilical, (2.9) reduces to

$$
\begin{equation*}
K=k-\sum_{i=1}^{m}\left\langle A_{i} X, Y\right\rangle^{2}+\sum_{i=1}^{m}\left\langle A_{i} X, X\right\rangle^{2} \quad \text { for } \quad\langle X, Y\rangle=0 . \tag{2.12}
\end{equation*}
$$

We put

$$
\begin{equation*}
a=\sum_{i=1}^{m}\left\langle A_{i} X, X\right\rangle^{2} . \tag{2.13}
\end{equation*}
$$

Then, since $\sum_{i=1}^{m}\left(\operatorname{tr} A_{i}\right)^{2}=n a$, (2.7) becomes

$$
\begin{equation*}
r=k n-k n^{2}-n a+\sum_{i=1}^{m} \sum_{\alpha, \beta=1}^{n}\left\langle A_{i} E_{\alpha}, E_{\beta}\right\rangle^{2} . \tag{2.14}
\end{equation*}
$$

Since $\left\langle E_{\alpha}, E_{\beta}\right\rangle=0$ for $\alpha \neq \beta$, we get

$$
\begin{equation*}
\sum_{i=1}^{m}\left\langle A_{i} E_{\alpha}, E_{\beta}\right\rangle^{2}=k-K+a . \tag{2.15}
\end{equation*}
$$

Hence, $\sum_{i=1}^{m} \sum_{\alpha, \beta=1}^{n}\left\langle A_{i} E_{\alpha}, E_{\beta}\right\rangle^{2}=n(n-1)(k-K+a)+n a$.
Thus, substituting this into (2.14) we have

$$
\begin{equation*}
n(n-1) a=r+(n-1) n K . \tag{2.16}
\end{equation*}
$$

Since $a \geqq 0$, we get $\quad r \geqq(1-n) n K$.
Q.E.D.

Remark. If M is a totally umbilical submanifold in a Riemannian manifold \bar{M} with the sectional curvature K, then

$$
R-r \leqq n(n-1)(K-K)
$$

3. Submanifolds in a space of constant holomorphic curvature. Let \bar{M} be a space of constant holomorphic curvature. Then the curvature tensor fields of \bar{M} is given by

$$
\begin{align*}
\bar{R}(\bar{W}, \bar{X}) \bar{Y}= & k\{\langle\bar{X}, \bar{Y}\rangle \bar{W}-\langle\bar{W}, \bar{Y}\rangle \bar{X}+\langle J \bar{X}, \bar{Y}\rangle J \bar{W} \tag{3.1}\\
& -\langle J \bar{W}, \bar{Y}\rangle J \bar{X}-2\langle J \bar{W}, \bar{X}\rangle J \bar{Y}\}
\end{align*}
$$

where \bar{X}, \bar{Y}, and \bar{W} are in $V(\bar{M}), k$ is a constant and J is the Kähler structure of \bar{M}. We may assume the Riemannian metric to be Hermitian.

For X in $V(M)$, we put
(3.2.)

$$
J X=T X+N X
$$

where $T X$ is in $V(M)$ and $N X$ is in $N V(M)$.
A submanifold M in an almost complex manifold is called invariant if $J X=T X$, anti-holomorphic if $J X=N X$.

Proposition 3.1. Let M be a submanifold in a space of constant holomorphic curvature. Then, for X, Y, W, and U in $V(M)$

$$
\begin{align*}
& r(W, X) Y= k\{\langle X, Y\rangle W-\langle W, Y\rangle X+\langle T X, Y\rangle T W \tag{3.3}\\
&-\langle T W, Y\rangle T X-2\langle T W, X\rangle T Y\} \\
&-\sum_{i=1}^{m}\left\{\left\langle A_{i} W, Y\right\rangle A_{i} X-\left\langle A_{i} X, Y\right\rangle A_{i} W\right\} \\
& r(U, Y, W, X)= k\{\langle X, Y\rangle\langle W, U\rangle-\langle W, Y\rangle\langle X, U\rangle \tag{3.4}\\
&+\langle T X, Y\rangle\langle T W, U\rangle-2\langle T W, X\rangle\langle T X, U\rangle\} \\
&-\sum_{i=1}^{m}\left\{\left\langle A_{i} W, Y\right\rangle\left\langle A_{i} X, U\right\rangle-\left\langle A_{i} X, Y\right\rangle\left\langle A_{i} W, U\right\rangle\right\} \\
& r(Y, W)= k(1-n)\langle W, Y\rangle-3 k\langle T W, T Y\rangle-\sum_{i=1}^{m}\left\langle A_{i} W, Y\right\rangle\left(\operatorname{tr} A_{i}\right) \tag{3.5}\\
&+\sum_{i=1}^{m} \sum_{\alpha=1}^{n}\left\langle A_{i} E_{\alpha}, Y\right\rangle\left\langle A_{i} E_{\alpha}, W\right\rangle \\
& r(Y)=(k-k n)\|Y\|^{2}-3 k\|T Y\|^{2}-\sum_{i=1}^{n}\left(\operatorname{tr} A_{i}\right)^{2}+\sum_{i=1}^{m} \sum_{\alpha, \beta=1}^{n}\left\langle A_{i} E_{\alpha}, E_{\beta}\right\rangle \tag{3.6}
\end{align*}
$$

and for an orthonormal basis $\{X, Y\}$,

$$
\begin{equation*}
K=k\left(1+3\langle T Y, X\rangle^{2}\right)-\sum_{i=1}^{m}\left\langle A_{i} X, Y\right\rangle^{2}+\sum_{i=1}^{m}\left\langle A_{i} X, X\right\rangle\left\langle A_{i} Y, Y\right\rangle . \tag{3.7}
\end{equation*}
$$

Proof. For the proof of (3.5), we use the fact

$$
\sum_{\alpha=1}^{n}\left\langle T Y, E_{\alpha}\right\rangle\left\langle T W, E_{\alpha}\right\rangle=\langle T Y, T W\rangle
$$

and the identity $\langle J X, Y\rangle=-\langle X, J Y\rangle$.
Q.E.D.

Theorem 3.2. Let M be a totally geodesic submanifold in a space of constant holomorphic curvature. Then for Y with $\|Y\|^{2}=b$, we have

$$
\begin{array}{ll}
(k-k n) b \geqq r(Y) \geqq(-2 k-k n) b & \text { for } k>0 \\
(k-k n) b \leqq r(Y) \leqq(-2 k-k n) b & \text { for } k<0 \tag{3.10}
\end{array}
$$

and the equality $r(Y)=b k-b k n$ occurs if and only if M is anti-holomorphic and $r(Y)=-2 b k-b k n$ occurs if and only if M is invariant.

Proof. Since M is totally geodesic, (3.6) reduces to

$$
\begin{equation*}
r(Y)=b k-b k n-3 k\|T Y\|^{2} . \tag{3.11}
\end{equation*}
$$

Since $0 \leqq\|T Y\|^{2} \leqq b$, we have (3.9) for $k>0$ and (3.10) for $k<0$. If M is invariant, then $\|Y\|^{2}=\langle J Y, J Y\rangle=\|T Y\|^{2}$, which implies $r(Y)$ $=-2 b k-b k n$, and vice versa.
Q.E.D.

Theorem 3.3. Notations being as above. Then we have

$$
\begin{array}{ll}
k n-k n^{2} \geqq r \geqq-2 k n-k n^{2} & \text { for } k>0 \\
k n-k n^{2} \leqq r \leqq-2 k n-k n^{2} & \text { for } k<0 . \tag{3.13}
\end{array}
$$

Especially, if $\langle T X, T Y\rangle=0$ for all orthogonal pairs $\{X, Y\}$ then the equality $r=k n-k n^{2}$ occurs if and only if M is anti-holomorphic, $r=-2 k n-k n^{2}$ occurs if and only if M is invariant.

Proof. If M is invariant, then $\left\|T E_{\alpha}\right\|^{2}=1$, which gives r $=-2 k n-k n^{2}$. Convercely, if $r=-2 k n-k n^{2}$, then $\left\|T E_{\alpha}\right\|^{2}=1$. Hence, for $X=\sum_{\alpha=1}^{n} f_{\alpha} E_{\alpha}$

$$
\begin{align*}
\|T X\|^{2} & =\sum_{\alpha=1}^{n} f_{\alpha}^{2}\left\langle T E_{\alpha}, T E_{\alpha}\right\rangle+\sum_{\alpha, \rho=1(\alpha \neq \beta)}^{n} f_{\alpha} f_{\beta}\left\langle T E_{\alpha}, T E_{\beta}\right\rangle \tag{3.15}\\
& =\sum_{\alpha=1}^{n} f_{\alpha}^{2}=\|X\|^{2}=\|J X\|^{2}
\end{align*}
$$

that is M is invariant.
Q.E.D.

As was proved in Theorem 2.6, we can state the following Theorem 3.4.

Theorem 3.4. Let M be a totally umbilical submanifold in a space of constant holomorphic curvature. Then

$$
\begin{equation*}
r \geqq n(1-n) K \tag{3.16}
\end{equation*}
$$ and the equality occurs if and only if M is totally geodesic.

Proof. Since M is totally umbilical, (5.8) reduces to

$$
\begin{equation*}
K=k\left(1+3\langle T Y, X\rangle^{2}\right)-\sum_{i=1}^{m}\left\langle A_{i} X, Y\right\rangle^{2}+\sum_{i=1}^{m}\left\langle A_{i} X, X\right\rangle^{2} \tag{3.17}
\end{equation*}
$$

Thus applying the similar calculations used in Theorem 2.5 we have the required (3.16).

References

[1] M. Ako: Submanifolds in Fubinian manifolds. Kôdai Math. Sem. Rep., 19, 103-128 (1967).
[2] S. Helgason: Differential Geometry and Symmetric Spaces. Academic Press, New York (1962).
[3] B. O'Neill: Isotropic and Kähler immersions. Canadian J. Math., 17, 907-915 (1965).
[4] B. Smith: Differential geometry of complex hypersurfaces. Thesis, Brown Univ., June (1966).
[5] K. Yano: Differential Geometry on Complex and Almost Complex Spaces. Pergamon Press (1965).

