69. On the Nörlund Summability of the Conjugate Series of Fourier Series

By Hiroshi Hirokawa*) and Ikuko Kayashima**)

(Comm. by Kinjirô Kunugi, M. J. A., May 13, 1968)
§ 1. Let $\left\{p_{n}\right\}$ be a sequence such that $P_{n}=p_{0}+p_{1}+\cdots+p_{n} \neq 0$ for $n=0,1,2, \cdots$ A series $\sum_{n=0}^{\infty} a_{n}$ with its partial sum s_{n} is said to be summable (N, p_{n}) to sum s, if $\left(p_{n} s_{0}+p_{n-1} s_{1}+\cdots+p_{0} s_{n}\right) / P_{n} \rightarrow s$ as $n \rightarrow \infty$. The choice $p_{n}=1 /(n+1)$ yields the familiar harmonic summability. Let $f(t)$ be a periodic finite-valued function with period 2π and integrable (L) over $(-\pi, \pi)$. Let its Fourier series be

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) \equiv \sum_{n=0}^{\infty} A_{n}(t) \tag{1.1}
\end{equation*}
$$

Then the conjugate series of the series (1.1) is

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(b_{n} \cos n t-a_{n} \sin n t\right) \equiv \sum_{n=1}^{\infty} B_{n}(t) \tag{1.2}
\end{equation*}
$$

Throughout this paper, we write

$$
\begin{aligned}
& \varphi(t) \equiv \frac{1}{2}\{f(x+t)+f(x-t)-2 f(x)\}, \quad \Phi(t) \equiv \int_{0}^{t}|\varphi(u)| d u \\
& \psi(t) \equiv \frac{1}{2}\{f(x+t)-f(x-t)\}, \quad \Psi(t) \equiv \int_{0}^{t}|\psi(u)| d u
\end{aligned}
$$

and $\tau=[1 / t]$, where $[\lambda]$ is the integral part of λ.
On the Nörlund summability of Fourier series at a given point x, the following results are known. Iyengar [3] proved that if

$$
\varphi(t)=o\left(1 / \log t^{-1}\right) \quad \text { as } \quad t \rightarrow+0
$$

then the series (1.1) at $t=x$ is harmonic summable to sum $f(x)$. Later, generalizing this result, Siddiqi [5] proved that if

$$
\Phi(t)=o\left(t / \log t^{-1}\right) \quad \text { as } \quad t \rightarrow+0,
$$

then the series (1.1) at $t=x$ is harmonic summable to sum $f(x)$. Further, generalizing this result, Pati [7] proved the following

Theorem A. Let $\left\{p_{n}\right\}$ be a sequence such that

$$
p_{n}>0, p_{n} \downarrow, P_{n} \rightarrow \infty \quad \text { and } \quad \log n=O\left(P_{n}\right)
$$

If

$$
\Phi(t)=o\left(t / P_{\tau}\right) \quad \text { as } \quad t \rightarrow+0,
$$

then the series (1.1) at $t=x$ is summable $\left(N, p_{n}\right)$ to sum $f(x)$.
Furthermore Rajagopal [8] proved the following

[^0]Theorem B. Let a function $p(t)$ be monotone non-increasing and positive for $t \geqq 0$. Let $p_{n}=p(n)$ and let

$$
\begin{equation*}
P(t) \equiv \int_{0}^{t} p(u) d u \rightarrow \infty \quad \text { as } \quad t \rightarrow \infty \tag{1.3}
\end{equation*}
$$

If, for some fixed $\delta, 0<\delta<1$,

$$
\begin{equation*}
\int_{\frac{1}{n}}^{0} \Phi(t) \frac{d}{d t} \frac{P(1 / t)}{t} d t=o\left(P_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{1.4}
\end{equation*}
$$

then the series (1.1) at $t=x$ is summable $\left(N, p_{n}\right)$ to sum $f(x)$.
It should be noted that Theorem B is a generalization of Theorem A. Thus, among these results, Theorem B is the most general. We now remark that, from Rajagopal [8, Lemma (a)], (1.3) and (1.4) together imply

$$
\begin{equation*}
\Phi(t)=o(t) \quad \text { as } \quad t \rightarrow+0 \tag{1.5}
\end{equation*}
$$

On the other hand, the summability (N, p_{n}) of the conjugate series of Fourier series at a given point x has been considered by Siddiqi [6], Dikshit [1, 2], Saxena [4] and others, respectively. Siddiqi proved that if

$$
\Psi(t)=o\left(t / \log t^{-1}\right) \quad \text { as } \quad t \rightarrow+0,
$$

then the series (1.2) at $t=x$ is harmonic summable to sum

$$
\begin{equation*}
\tilde{f}(x)=-\frac{1}{\pi} \int_{0}^{\pi} \psi(t) \cot \frac{t}{2} d t \tag{1.6}
\end{equation*}
$$

provided that the integral exists as a Cauchy integral at origin. A conjugate-analogue of Pati's Theorem A was obtained by Dikshit [1]. That result was generalized independently by Dikshit [2] and by Saxena [4]. Their theorems are as follows.

Theorem C. (Dikshit [2]). Let $\left\{p_{n}\right\}$ be a sequence such that
(1.7) $\quad p_{n}>0, p_{n} \downarrow, P_{n} \rightarrow \infty$, and $\alpha(n) \log n=O\left(P_{n}\right)$, where $\alpha(t)$ is a positive monotone non-decreasing function. If

$$
\begin{equation*}
\Psi(t)=o\left(\alpha(1 / t) t / P_{\tau}\right) \quad \text { as } \quad t \rightarrow+0 \text {, } \tag{1.8}
\end{equation*}
$$

then the series (1.2) at $t=x$ is summable $\left(N, p_{n}\right)$ to sum $\tilde{f}(x)$ provided that the integral in (1.6) exists as a Cauchy integral at origin.

Theorem D. (Saxena [4]). Let $\left\{p_{n}\right\}$ be a sequence such that

$$
\begin{equation*}
p_{n}>0, p_{n} \downarrow, P_{n} \rightarrow \infty, \quad \text { and } \log n=O\left(\beta\left(P_{n}\right)\right), \tag{1.9}
\end{equation*}
$$

where $\beta(t)$ is a positive monotone non-decreasing function such that $t / \beta(t)$ is also monotone non-decreasing. If

$$
\begin{equation*}
\Psi(t)=o\left(t / \beta\left(P_{\tau}\right)\right) \quad \text { as } \quad t \rightarrow+0 \tag{1.10}
\end{equation*}
$$

then the series (1.2) at $t=x$ is summable $\left(N, p_{n}\right)$ to sum $\tilde{f}(x)$ provided that the integral in (1.6) exists as a Cauchy integral at origin.

Remark. It is easily proved that the assumption on monotone of $\beta(t)$ is superfluous.

Theorem E. (Saxena [4]). Let $\left\{p_{n}\right\}$ be a sequence such that

$$
p_{n}>0, p_{n} \downarrow, P_{n} \rightarrow \infty, \quad \text { and } \quad \log n=O\left(\gamma\left(P_{n}\right)\right),
$$

where $\gamma(t)$ is a positive function such that

$$
\int_{\frac{1}{n}}^{\delta} \frac{P_{\tau}}{\gamma\left(P_{\tau}\right)} \frac{1}{t} d t=O\left(P_{n}\right) \quad \text { as } \quad n \rightarrow \infty
$$

If

$$
\Psi(t)=o\left(t / \gamma\left(P_{\tau}\right)\right) \quad \text { as } \quad t \rightarrow+0
$$

then the series (1.2) at $t=x$ is summable $\left(N, p_{n}\right)$ to sum $\tilde{f}(x)$ provided that the integral in (1.6) exists as a Cauchy integral at origin.

It is obvious that Theorem E is a generalization of Theorem D .
The purpose of this paper is to prove the following two theorems.
Theorem 1. Let $\left\{p_{n}\right\}$ and $P(t)$ be defined as in Theorem B. If, for some fixed $\delta, 0<\delta<1$,

$$
\begin{equation*}
\int_{\frac{1}{n}}^{0} \Psi(t) \frac{d}{d t} \frac{P(1 / t)}{t} d t=o\left(P_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{1.11}
\end{equation*}
$$

then the series (1.2) at $t=x$ is summable $\left(N, p_{n}\right)$ to sum $\tilde{f}(x)$ provided that the integral in (1.6) exists as a Cauchy integral at origin.

Theorem 2. If Theorem C holds, then Theorem D also holds and conversely, when

$$
\begin{equation*}
\alpha(1 / t) / \alpha(\tau)=O(1) \quad \text { as } \quad t \rightarrow+0 \tag{1.12}
\end{equation*}
$$

if Theorem D holds, then Theorem C also holds.
Obviously there exists a function $\alpha(t)$ which does not satisfy the condition (1.12). Thus we see that Theorem C is better than Theorem D. We do not know however a relation between Theorems C and E, when the function $\alpha(t)$ does not satisfy the condition (1.12).
§2. Proof of Theorem 1. Let us write

$$
\widetilde{s}_{n}(x)=\sum_{k=1}^{n} B_{k}(x) \quad \text { and } \quad \tilde{t}_{n}(x)=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} \tilde{s}_{k}(x)
$$

Then we have

$$
\begin{aligned}
\tilde{s}_{n}(x)-\tilde{f}(x) & =\frac{1}{\pi} \int_{0}^{\pi} \psi(t) \frac{\cos \left(n+\frac{1}{2}\right) t}{\sin t / 2} d t \\
& =\frac{1}{\pi} \int_{0}^{\delta} \psi(t) \frac{\cos \left(n+\frac{1}{2}\right) t}{\sin t / 2} d t+\eta_{n},
\end{aligned}
$$

where, by the Riemann-Lebesgue theorem,

$$
\begin{equation*}
\eta_{n}=\frac{1}{\pi} \int_{0}^{\pi} \psi(t) \frac{\cos \left(n+\frac{1}{2}\right) t}{\sin t / 2} d t \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{2.1}
\end{equation*}
$$

and

$$
\tilde{t}_{n}(x)-\tilde{f}(x)=\sum_{k=0}^{n} p_{n-k}\left\{\tilde{s}_{k}(x)-\tilde{f}(x)\right\} / P_{n}
$$

$$
\begin{aligned}
& =\frac{1}{\pi P_{n}} \int_{0}^{\delta} \psi(t) \sum_{k=0}^{n} p_{n-k} \frac{\cos \left(k+\frac{1}{2}\right) t}{\sin t / 2} d t+\xi_{n} \\
& =\frac{1}{\pi P_{n}} \int_{0}^{\delta} \psi(t) \frac{K_{n}(t)}{\sin t / 2} d t+\xi_{n},
\end{aligned}
$$

where $K_{n}(t)=\sum_{k=0}^{n} p_{n-k} \cos \left(k+\frac{1}{2}\right) t$ and, by (2.1) together with the regularity of the method of summation (N, p_{n}),

$$
\xi_{n}=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} \eta_{k} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Thus we have

$$
\begin{aligned}
\tilde{t}_{n}(x)-\tilde{f}(x) & =\frac{1}{\pi P_{n}}\left(\int_{0}^{\frac{1}{n}}+\int_{\frac{1}{n}}^{\delta}\right) \psi(t) \frac{K(t)}{\sin t / 2} d t+o(1) \\
& =I_{n}+J_{n}+o(1)
\end{aligned}
$$

say. Since the integral in (1.6) exists, we have

$$
\frac{1}{\pi} \int_{0}^{\frac{1}{n}} \psi(t) \cos \frac{t}{2} d t=o(1) \quad \text { as } \quad n \rightarrow \infty
$$

Hence

$$
\begin{aligned}
I_{n} & =\frac{1}{\pi P_{n}} \int_{0}^{\frac{1}{n}} \psi(t) \frac{K_{n}(t)}{\sin t / 2} d t \\
& =\frac{1}{\pi P_{n}} \int_{0}^{\frac{1}{n}} \psi(t) \frac{K_{n}(t)-P_{n} \cos t / 2}{\sin t / 2} d t+o(1) \\
& =\frac{1}{\pi P_{n}} \int_{0}^{\frac{1}{n}} \psi(t)\left(\sum_{k=0}^{n} p_{n-k} \frac{\cos (k+1 / 2) t-\cos t / 2}{\sin t / 2}\right) d t+o(1)
\end{aligned}
$$

Since $|\sin k t| \leqq k|\sin t|$ when k is an positive integer, we get

$$
\begin{aligned}
\sum_{k=0}^{n} p_{n-k} \frac{\cos (k+1 / 2) t-\cos t / 2}{\sin t / 2} & =-2 \sum_{k=0}^{n} p_{n-k} \frac{\sin (k+1) t / 2 \sin k t / 2}{\sin t / 2} \\
& =O\left(\sum_{k=0}^{n} k p_{n-k}(k+1) t\right) \\
& =O\left(n^{2} t \sum_{k=0}^{n} p_{n-k}\right) \\
& =O\left(n^{2} P_{n} t\right) .
\end{aligned}
$$

Hence, by an analogue of (1.5),

$$
\begin{aligned}
I_{n} & =O\left(\frac{1}{\pi P_{n}} \int_{0}^{\frac{1}{n}}|\psi(t)| n^{2} P_{n} t d t\right)+o(1) \\
& =O\left(n \int_{0}^{\frac{1}{n}}|\psi(t)| d t\right)+o(1)=o(1) \text { as } n \rightarrow \infty
\end{aligned}
$$

Thus, in order to prove Theorem, it is sufficient to prove that $J_{n}=o(1)$ as $n \rightarrow \infty$. But this is proved by an estimation similar to one of J_{n} in the proof of Theorem B. Thus our Theorem is completely proved.
§ 3. Proof of Theorem 2. Let $h(t)$ be a continuous function defined over $t \geqq 0$ such that

$$
h(t)=P_{n} \quad(t=n) \quad \text { and } \quad h(t)=\text { linear } \quad \text { (elsewhere). }
$$

Then the function $h(t)$ is strictly increasing so that the function $h(t)$ has a inverse function $k(t)$ such that $n=k\left(P_{n}\right)$ and $k(t)$ is strictly increasing. We shall now prove the first part of Theorem. Let $\left\{p_{n}\right\}$ and $\beta(t)$ satisfy the condition of Theorem D . Then we define $\alpha(t)$ by $\alpha(t)=h(t) / \beta(h(t))$. Since the functions $h(t)$ and $t / \beta(t)$ are monotone non-decreasing, the function $\alpha(t)$ is also so. Then, by (1.9),

$$
\log n=O\left(\beta\left(P_{n}\right)\right)=O\left(P_{n} / \alpha(n)\right)
$$

and, by (1.10),

$$
\Psi(t)=o\left(t / \beta\left(P_{\tau}\right)\right)=o\left(\alpha(\tau) t / P_{\tau}\right)=o\left(\alpha(1 / t) t / P_{\tau}\right)
$$

These prove the first part of Theorem. To prove the converse part, we set $\beta(t)=t / \alpha(k(t))$. Then we see that $t / \beta(t)=\alpha(k(t))$ is monotone non-decreasing and, by (1.7),

$$
\log n=O\left(P_{n} / \alpha(n)\right)=O\left(P_{n} / \alpha\left(k\left(P_{n}\right)\right)\right)=O\left(\beta\left(P_{n}\right)\right),
$$

and, by (1.8) and (1.12),

$$
\Psi(t)=o\left(\alpha(1 / t) t / P_{\tau}\right)=o\left(\alpha(\tau) t / P_{\tau}\right)=o\left(\alpha\left(k\left(P_{\tau}\right)\right) t / P_{\tau}\right)=o\left(t / \beta\left(P_{\tau}\right)\right)
$$

Thus the proof is complete.
§4. We shall now show that Theorem 1 is a generalization of Theorem C. For the proof, it is sufficient to prove that the condition of Theorem C implies the one of Theorem 1. Let $\left\{p_{n}\right\}$ be given as in Theorem C. Then we define a function $p(t)$ by

$$
p(t)=p_{n} \quad \text { for } \quad n \leqq t<n+1, \quad n=0,1,2, \cdots .
$$

Further define a function $P(t)$ as in (1.3). Then, by the condition, the function $p(t)$ is monotone non-decreasing and positive for $t \geqq 0$. By (1.7) and (1.8), we get, $t \rightarrow+0$,

$$
P(1 / t) \rightarrow \infty, \quad P_{\tau} \sim P(1 / t), \quad \alpha(1 / t) / P(1 / t)=O\left(1 / \log t^{-1}\right)
$$

and

$$
\Psi(t)=o(\alpha(1 / t) t / P(1 / t))
$$

Hence we have

$$
\begin{aligned}
\int_{\frac{1}{n}}^{\delta} \Psi(t) \frac{d}{d t} \frac{P(1 / t)}{t} d t & =o\left(\int_{\frac{1}{n}}^{\delta} \alpha\left(\frac{1}{t}\right) \frac{t}{P(1 / t)} \frac{d}{d t} \frac{P(1 / t)}{t} d t\right) \\
& =o\left(\int_{\frac{1}{n}}^{\delta} \alpha(t) \frac{p(1 / t)}{P(1 / t)} \frac{1}{t^{2}} d t+\int_{\frac{1}{n}}^{\delta} \alpha\left(\frac{1}{t}\right) \frac{1}{t} d t\right) \\
& =o\left(\int_{\frac{1}{\delta}}^{n} \frac{p(t)}{\log t} d t\right)+o\left(P_{n}\right) \\
& =o\left(P_{n}\right)
\end{aligned}
$$

which shows that (1.11) holds. Thus the proof is complete.
We shall next show that Theorem 1 is also a generalization of Theorem E. Let $\left\{p_{n}\right\}$ be given as in Theorem E. Then we define func-
tions $p(t)$ and $P(t)$ as in the above case. Since the sequence $\left\{p_{n}\right\}$ is monotone decreasing,

$$
\frac{1}{t} p\left(\frac{1}{t}\right)<(n+1) p_{n} \leqq P_{n}=P_{\tau} \leqq P\left(\frac{1}{t}\right)
$$

when $n \leqq 1 / t<n+1, n=0,1,2, \cdots$. Thus we have, by the condition,

$$
\begin{aligned}
\int_{\frac{1}{n}}^{\delta} \Psi(t) \frac{d}{d t} \frac{P(1 / t)}{t} d t & =o\left(\int_{\frac{1}{n}}^{\delta} \frac{p(1 / t)}{\gamma\left(P_{\tau}\right)} \frac{1}{t^{2}} d t+\int_{\frac{1}{n}}^{\delta} \frac{P(1 / t)}{\gamma\left(P_{\tau}\right)} \frac{1}{t} d t\right) \\
& =o\left(\int_{\frac{1}{n}}^{\delta} \frac{P(1 / t)}{\gamma\left(P_{\tau}\right)} \frac{1}{t} d t\right) \\
& =o\left(P_{n}\right),
\end{aligned}
$$

which shows that (1.11) holds. Thus the proof is complete.
§5. From the argument in §4, we have the following theorems as corollaries of Theorem B. These are analogues of Theorems C and E .

Theorem 3. Let $\left\{p_{n}\right\}$ and $\alpha(t)$ be defined as in Theorem C. If

$$
\Phi(t)=o(\alpha(1 / t) t / P) \quad \text { as } \quad t \rightarrow+0
$$

then the series (1.1) at $t=x$ is summable $\left(N, p_{n}\right)$ to sum $f(x)$.
Theorem 4. Let $\left\{p_{n}\right\}$ and $\gamma(t)$ be defined as in Theorem E. If

$$
\Phi(t)=o\left(t / \gamma\left(P_{\tau}\right)\right) \quad \text { as } \quad t \rightarrow+0
$$

then the series (1.1) at $t=x$ is summable $\left(N, p_{n}\right)$ to sum $f(x)$.
It should be noted that these Theorems are also proved directly by analogous methods to those of the proofs of Theorems C and E.

References

[1] H. P. Dikshit: The Nörlund summability of the conjugate series of a Fourier series. Rend. Circ. Mat. Palermo, 11, 217-224 (1962).
[2] -: On the Nörlund summability of the conjugate series of a Fourier series. Rend. Circ. Mat. Palermo, 14, 165-170 (1965).
[3] K. S. K. Iyengar: A Tauberian theorem and its application to convergence of Fourier series. Proc. Indian Acad. Sci., Sec. A, 18, 81-87 (1943).
[4] A. Saxena: On Nörlund summability of the conjugate series of a Fourier series. Rend. Circ. Mat. Palermo, 13, 222-228 (1964).
[5] J. A. Siddiqi: On the harmonic summability of Fourier series. Proc. Indian Acad. Sci., Sec. A, 28, 527-531 (1948).
[6] -: The Nörlund summability of trigonometrical series. D. Phil. Thesis. (1949).
[7] T. Pati: A generalization of a theorem of Iyengar on the harmonic summability of Fourier series. Indian J. Math., 3, 85-90 (1961).
[8] C. T. Rajagopal: On the Nörlund summability of Fourier series. Proc. Cambridge Phil. Soc., 59, 47-53 (1963).

[^0]: *) Chiba University, Chiba, Japan.
 **) Kuroiso Senior High School, Tochigi, Japan.

