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A Minimal Property or an Operator
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1o If T is a completely continuous operator defined on a Hilbert
space H, then T can be expressed in the Schaen formula:
( 1 ) T

=1

where (i) {2,} is a decreasing sequence of positive numbers which are
proper values of
( 2 ) T (T* T)1/2,
(ii) (9,} and {} are orthonormal sets in H, and (iii) a dyad f(R)g is
defined by
( 3 ) (f(R)g)h-- (hlg)f,
for every h e H, cf. [2]. Since the proper values of a completely con-
tinuous operator TI converge to zero, the series of (1) converges
uniformly.

An operator T acting on H is of Hilbert-Schmidt class if

is finite whenever {) is a orthonormal base of H. An operator T of
Hilbert-Schmidt class is completely continuous and

(5)

where (} is the coefficients of the Schatten formula (1).
The purpose of the present note is to show the following minimal

property of the Schatten formula:
Theorem 1. If T is of Hilbert-Schmid$ class and expressed in

(1), hen

attains its minimum among all approximation by dyads" that is,
( 6 )

for every dyad f(R)g.
2. Let H=L[0, 1]. If u(x, y) is a measurable function defined

on [0, 1] [0, 1] with

u I[- u(x, y)I"dx dy< + c,

then, for every f e H,
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(8)
then

( 7 ) Tf(y)- u(x, y)f(x)dx

defines and operator T on H which is of Hilbert-Schmidt class with
If g and h are functions in H and

u(x, y)-- g(x)*h(y),

Tf(y) h(y)g(x)*f(x)dx- (f g)h(y)

implies that u of (8) defines a dyad on H.
S. Hitotumatu pointed out, in his recent study [1] on the numeri-

cal approximation of a function of two variables by the product of
functions, the following

Theorem 2. (Hitotumatu). If u(x, y) is square-integrable, then
there are two square-integrable functions g(x) and h(y) such that

Ilu--g*hll- lu(x’ y)-g(x)*h(y) Idx dy

attains its minimum.
By the equality of the norms, it is obvious that Theorem I implies

Hitotumatu’s theorem. Hitotumatu’s proof of Theorem 2 is based on
the weak compactness of the unit ball and the semi-continuity of the
norm with respect to the weak topology, whereas our proof utilizes
only the Schatten formula and the definition (4) of the Schmidt norm.. Suppose that T is a Hilbert-Schmidt operator and expressed
in (1). Let be a number and f, g elements of Hwith ]f[=]g]]-l.
If { is a base of H with -g, then (4) implies

=1

=} T]]+]T--af
r--r+ g--f.

Hence, we have
(9) r--fg[=[[ r--rg+ [ rg--f .

To minimize the right hand side of (9), we need to maximize
]]Tg]] under ]]g]=l and to minimize ]Tg--af] under [f]]-g]-l.
The first is obviously solved by putting g-+, and the second is solved
if a-2 and f-9 since

T% E (% +) ,.
t=l

Therefore, (6) is satisfied.
4. The residue of the approximation by a dyad is now easily

computed’
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Hence, if IT has only one non-zero proper value of multiplicity one,
then the approximation is exact, that is, T is a dyad.

The authors expresses their hearty thanks to H. Choda for con-
versations with him.
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