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1. Introduction. Suppose M, S, G, K, J, if, , /2, and are
defined as are in the example in the introduction in [1]. Then (, , d)
is an abstract integral strueture [1] and q is an abstract integral [1]
with respect to this structure. For each a e K, let g be the function
in L such that g(x)=a or each x e M. Then the operator "-" may
be considered as an isomorphism of the topological additive group K
into L. Let us denote by 7 the image of K by this isomorphism. The
topological additive group K can be identified with the subgroup K
of L by this isomorphism and it holds that Kc.

Now let i be the map of SK into J such that i(X, a)=,u(X).a
for each X e S and a e K. Then this map i satisfies the following
conditions

1) i(X, a + b)-i(X, a) + i(X, b),
2) i(X+ Y, a)-i(X, a)+i(Y, a) if XY-O,

for eaeh X, Y e S, and a, b e K. Further q is an extension o i.
Conversely, when sueh a map i is given, how can we extend the

map i to an abstract integral 5? We shall give an answer to this
question in the present part of the paper.

2. Construction o an abstract integral.
Assumption 1. Let (, , J) be an abstract integral structure

and K a subgroup of . Let i be a map of SK into J satisfying
the conditions"

1) i(X, a+b)=i(X, a)+i(X, b),
2) i(X+ Y, a)-i(X, a) + i(Y, a) if XY- O,

for each X, Y e , and a, b e K. Denote by o the subgroup of
generated by K={XaIX e and a e K} and by the -completion
[] o g0.

Proposition 1. _G0={ Xa, X e and a e K, i= 1, 2, ..., n}

{ X.a,[X, e and a e K, i- 1, 2, ..., n, and XX-0 (] :/: k)}.

Proof. It suffices to show that, for any g= , Xa -qo, where
=1

Xe3 and aeK, i-l, 2,...,n, there exist Yeq and beK,
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]--1, 2, ..., m, such that YY,=O (]:/:]’) and g--, Yb. This will
j=l

be proved by induction on n. Since we have nothing to prove for
n--l, it suffices to show, under the assumption that our assertion is
true or n-r-l, that or n--r there exist Y’s and b’s stated above.
Our assumption implies that there exist Zeq and ceK,

r-1

k=l, 2, ..., l, such that ZZ,=O (kk’) and , Xa= , Zc. Put
t=1 k =1

Y-XrZ, b-c+ar, ]=1,2,...,1, put Yz+j=Z+Y, b+j-c,

]= 1, 2, ., l, and put Y,+,-X/X, Z, bu+, a,. Then it is easy

to see that Ye , beK, ]=1, 2, ..., 2/+1, YY,-O (]:/:]’) and that
2+1

Yb-- , Zc/ X,a,= , Xa-g. This completes the induction
j=l ,=1 t=l

and thus Proposition 1 is proved.
Corollary. o is an -invaiant subgroup of .
The corollary assures us that the -completion of 0 is well

defined. Further we have
Proposition 2. K is contained in .
The purpose of this part of the paper is to prove, under some

assumptions, that the map i is uniquely extended to an abstract
integral with respect to (, , J).

First we shall show the uniqueness:

Proposition 3. If the map i is extended to an abstract integral
with respect to (q, , J), then such an abstract integral is uniquely
determined.

Proof. For Xe and ge, we have Xgeo and hence there

exist X e and a e K, i-1, 2, ..., n, .such that Xg- , Xa. Thus
t=l

we have q(X, g)-5(X, g)--5(X, Xg)--5(X, Xa)--, J(X, Xa)
i=l t=l

--, J(XX, a)= , i(XX, a), and this proves the proposition.

To prove the existence of an abstract integral which is an exten-
sion of i, let us begin with a lemma which is easily verified.

Lemma 1. If X , i--1, 2,..., m, XX,--0 (i=/=i’) and if Y e ,
]--1, 2, ..., n, YY,-O (]:/:]’), then there exist Zi e , i--O, 1, ..., m
2"=0, 1,..., n ((i, ])=/:(0, 0)), such that ZZ, -0 ((i, ]):/=(i’, ]’)),

X- , Z, i=l, 2, ..., m, and Y= Z, ]=1, 2, ..., n. Moreover,
=0 =0

these Z’s are uniquely determined, espectively, as follows:
Zi=XY, Zo-X+X Y and Zo=Y+Y X for i=1, 2, .., m

=I =1

and ]--1, 2, ..., n.



454 M. TAKAHASHI [Vol. 44,

Corollary. For any g and h in g0, there exist X e S, a e K, and

beK, i--1,2, n, such that XX=O (]:/=k), g=, Xa, and
i=l

h-- Xb.
=1

Under the following assumption, we shall show that the map i
can be extended to an abstract integral with respect to (, g, J),
except for the topological condition (in other words, if 7 is a discrete
group).

Assumption 2. If X e S, X=/:0, a e K, a=/=0, then XaO.
Lemma 2. If Xe , ae K, i=l, 2, ..., m, XX,=O (i=/=i’), if

Y e S, b e K, ]- 1, 2, n, YY,-O (]=/=]’), and if , Xa- Yb,
t=l j=l

then, for each i and ], it holds that
1) a-b if XYO,
2)

3)

a--O if X+X Y:/=0,

b-O if Y+Y , X=/=O.

Proof. SinceO-XYO--XY(Xrar- ,Ysbs)- XYa-xrb
r=l s=l

=XY(a--b), Assumption 2 implies 1). 2) ollows rom 0-(X

+ + +
=1 r=l s=l =1

=(X+X Y)a and 3) is proved in an analogous way.

Lemma . There exists a unique homomorphism I of o into J
such that

I(Xa)-i(X, a) for each X e and a e K.
Proof. For any g e F0 there exist X e and a e K, i- 1, 2,

.., m, such that XX,-O(ii’) and g= Xa. The uniqueness o I

ollows rom I(g)-I( Xa)- I(Xa)= i(X, a) and the existence
=1 i=l

is proved as follows. For another expression of g" g- Yb, where
=1

Ye3, beK, ]-l, 2,...,n, and YY,-O(]]’), we show that

i(X, a)- i(Y, b). For these X’s and Y’s, there exist Z e 3,

for i=O, 1, ..., m and ]-0, 1, ..., n ((i, ]) (0, 0)), satisfying the con-
ditions in Lemma 1. Lemma 2 implies that a-b for il and ]1
such that Z0, that a=0 or il such that Z00 and that b-0
for ]1 such that Z00. Thus we have i(X, a)= i( Z, a)

=1 =1 j=O

i(Z, a)= i(Z,a)- i(Z, b)= i(Y, be). Hence,
i=l j=O i=l j=l j=l i=l j=l
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for g= F, Xa, we can define I(g) as F, i(X, a) unambiguously and
=I (=i

thus map I of 0 into J is defined. That the map I is homo-
morphism is shown as ollows. For g and h in 0, Corollary to
Lemma 1 implies that there exist X e , a e K, and b e K, i= 1, 2,.

.., n, such that XX=O (]k), g= Xa and h= F, Xb. Then
i=l =1

we have I(g + h) I( Xa+ Zb) I( Z(a+ b)) , i(Z, a+ b)
i=l i=l i=l =1

i(X, a) + i(X, b)- I(g) + I(h). For X e and a e K, that
’=I /,=I

I(Xa)=i(X, a) is obvious from the definition of I and this completes
the proo of Lemma 3.

For an abstract integral structure (, , J), a map 5 of 3
into J is called a discrete abstract integral with respect to the struc-
ture if it satisfies the conditions:

(.’) The map =5(X, f) is a homomorphism of into J with
respect to f or any fixed X.

(**) (XY, f)=(X, Yf) for each X, Y e , and f e .
Any abstract integral is a discrete abstract integral and, con-

versely, a discrete abstract integral 5 is an abstract integral if and
only i it satisfies the condition"

(.") The map 5=(X, f) is continuous with respect to f for
any fixed X.

Now we Can prove the following
Proposition 4. The map i is uniquely extended to a discrete

abstract integral with respect to (, , J).
Proof. Define a map of into J by (X, g)=I(Xg), or

each Xe and ge, where I is the map in Lemma3. Then it is
easy to verify that the map 5 is a discrete abstract integral with
respect to (, , J) which is an extension of i. The uniqueness of
such an extension follows rom Proposition 3 when we consider to
be a discrete group and this completes the proof.

We see that a necessary and sufficient condition for the map i to
be extended to an abstract integral with respect to (, , J) is that
the discrete abstract integral in Proposition 4 satisfy Condition
(.") above.

It will be seen that a sufficient condition for (.") is that the fol-
lowing Assumptions 3 and 4 be satisfied.

Assumption 3. For any neighbourhood P of the unit element of, there exists a neighbourhood Q of the unit element of such that
f e Q, a e K, X e q, X:/=0, and X(f-a)=O imply a e P.

Assumption 4. For any X in and for any neighbourhood V of
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the unit element of J, there exists a neighbourhood P of the unit
element of such that

a e P K, X e , i= 1, 2, ., n, and XX 0 (] =/= k)

imply , i(XX, a) e V.
i=1

Theorem 1. Under Assumptions 1, 2, 3, and 4, the map i is
uniquely extended to an abstract integral with respect to the ab-
stract integral structure (, , J).

Proof. The uniqueness has been proved in Proposition 3. Let
q be the discrete abstract integral in Proposition 4. Then we need
only prove that the map J satisfies Condition (.") above. Suppose
X e q and let V be any neighbourhood of the unit element of J. Then
there exists a neighbourhood P of the unit element of satisfying
the condition in Assumption 4. For this neighbourhood P, there
exists a neighbourhood Q of the unit element of satisfying the con-
dition in Assumption 3. Now, for given g e Q, we assert that
J(X, g)e V, which proves the theorem. Since Xg e-o, there exist
Xeq and aeK, i=l, 2,...,n, such that XX=0 (]:/:k) and

Xg- Xa. We may assume that XX=0 or 1=< i__<m and XX-0

or mi<=n, where m is an integer such that O<=m<__n. Then, for

each i, it holds that XX(g-a)-XXXg--XXa-XX , Xa-XXa
j=l

-XXa-XXa=O, which, by the definition of Q, implies that a e P

or l_<i_<m. Thus, by the definition of P, we have , i(XX, a) V.

Hence q(X, g)-5(X, Xg)-J(X, , Xa)= (X, Xa)- , (XX, a)
t=l i=l t=l

i(XX, a)= , i(XX, a) e V. This completes the proof.
i=1
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