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1. Let {Pn} be a sequence such that P=Po+P+’" +PnO for

n-0, 1, 2,.... A series . a with its partial sum Sn is said to be
=0

summable (N, p) to sum s, if
1 , p_s---,s as n--,.
Pn k--O

Let f() be a periodic finite-valued function with period 2 and inte-
grable (L) over (--, ). Let its Fourier series be

(1.1) __1 a0 /
, (a cos nt/ b sin nt)-- , A(t).

2 =1 =o

Then the conjugate series of (1.1) is

(1.2) F, (b cos nt--an sin nt)= B(t).
=I =I

Throughout this paper, we write

(p(t)---{f(+ t)+f(-t)-f(x)}, (t)--

(t)=_{f(x+t)--f(x--t)}, (t)---- I(u)ldu

and v=[1/t], where [2] is the integral part of 2.
The purpose of this paper is to prove the following two theorems.
Theorem 1. Let {p} be a sequence such that

(1.3) p)0, p $ and P--.c.
And let 2(t) be a positive integrable function such that

(1.4) I 2(U)u du=O(P) as n-c,

for any fixed O. If

then the series An(x) i8 summable (N, p,) to sum f(x).

Theorem 2. Let {p} and 2(t) be defined as in Theorem 1. If
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then the series F, B(x) is summable (N, p,) to sum

f(x)= ----1 (u) cot--u du
2

provided that this integral exists as a Cauchy integral at origin.
2. Before we prove these theorems, we give some remarks on

these results. Assuming that
(t)> 0, (t) and (n) log n- O(P),

we have, for any fixed ] 0,
2(u) du <= 2(n)(log n- log )- O(2(n) log n)- O(P),
u

which shows that (1.4) holds. Thus we see that Theorem I is a gen-
eralization of a theorem due to Hirokawa and Kayashima [1 Theorem
3] and Theorem 2 is a generalization of a theorem due to Dikshit [2].
On the other hand, if we set 2(t)=tp(t), where p(t)--pn or n<=tn+ 1,
n-0, 1, 2, ..., then we have, or any fixed ] 0,

2(u) du= p(u)du<=
/

(u)du-P
U

and

Thus we see that Theorems 1 and 2 are generalizations of theorems
due to Singh [4; Theorems 1 and 2]. By the way, we know, 2rom
the argument in 3, that our Theorems 1 and 2 are contained in known
results due to Rajagopal [3] and due to Hirokawa and Kayashima [1;
Theorem 2], respectively. But, the conditions of our Theorems are
simpler than those of Rajagopal and of Hirokawa and Kayashima.

:. We shall now prove Theorem 1. For the proo2 we need the
following theorem due to Rajagopal [3].

Theorem A. Let p(t) be a positive monotone non-increasing func-
tion such that

P(t)-- p(u) duc as

And let p=p(n) for a non-negative integer n. If, for some fixed
0,

(t) d P(1/t) dt-o(P)(3.1)
,/,, d---

then the series F, A(x) is summable (N, p) to sum f(x).

To prove Theorem 1, we first define p(t) by
p(t)=p for n_<tn+l, n=0,1,2, ....

And define P(t)= p()d. Then we have, by our assumption,
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P(t)-c as t-c.
Furthermore we have, by (1.3), (1.4), and (1.5), for some fixed )0,

I (I t2(1/t) p(1/)/+P(1/t)(t) d P(1/t) d-o
/ dt t / P t

=o d =o(P),
/

which shows that (8.1) holds. Thus, by heorem A, the proof of
heorem I is completed.

If we use, in the above roo, a theorem due to Hirokawa and
Kayashima [1; heorem 2] instead of heorem A, we see that
heorem 2 is similarly proved.
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