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144. A Remark on a Problem of M. A. Naimark

By Chien WENJEN
California State College at Long Beach, U. S. A.

(Comm. by Kinjir KuNuGI, M. J.A., Sept. 12, 1968)

Gelfand and Naimark [6] characterized the algebra of all continu-
ous complex-valued functions on a compact Hausdorff space as a
commutative Banach *-algebra which satisfies the condition
=llx*l]’llxll" while Aren’s generalization of the Gelfand-Naimark
theorem is that a complete commutative seminormed *-algebra with a
partition of unity is equivalent to the algebra of all continuous com-
plex-valued functions on a locally compact paracompact space C(T,K)
[1]. A question is posed by Naimark in his treatise [6]" Is it possible
to characterize all complete commutative seminormed *-algebras
which are equivalent to (topologically equivalent to algebraically *-iso-
morphic) the algebras of all continuous complex-valued functions on
locally compact Hausdorff spaces? Even though some more general
result in this direction was obtained by Sha [6, 1964], it seems the
problem remains open. Incidentally a solution of the problem was
given by the writer [8, p. 182]. The purpose of this note is to present
a modified proof of the solution and a second characterization in terms
of seminorms.

"Seminormed algebra" and "locally multiplicatively convex alge-
bra" (LMC) will be used synonymically in this paper. A subset X of
an algebra is said to multiplicatively convex (m-convex) if
We assume the family c(? of seminorms of an algebra is so large that
V e c?, U_< V imply U e c?. Some basic theorems and definitions
employed hereafter are referred to [1], [3], and [4].

1. Functional representation. Lemma. If fiX is the Stone-
Cech compactification of a completely regular space X, then any un-
bounded continuous real function of f on X can be continuously ex-
tended to an extended function f over fiX which admits / c or
on some subsets of X-X.

First proof. Let B be the two-point (___ c) compactification of
the real line. Then B is a compact Hausdorff space and f is a con-
tinuous mapping from X into B. By the Stone-ech compactification
theorem [2, p. 153] f has a continuous extension f on fiX and the
lemma is proved.

Second proof. Suppose
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fn(X) if n f(x) n,
f(x)<_ --n.

Let p e flX--X and
Nn(p)- (x fn(x)-fn(P)l (e ( [, x e X}

where f is the continuous extension of fn over fiX. In case f is
bounded on N(p)t X, f and f coincide on N(p)X for some m and
f can be continuously extended to a finite value at p. Otherwise f is
unbounded on N(p)X or all n and e and f(x) is either n or (-n
on N(p)X or all large n. Then f assumes + c or --c at p.

Theorem 1. A complete commutative seminored *-algebra A
with unity and satisfying the condition"

V(xx*) >_ kV(x)V(x*), V c(?, x A,
is equivalent to the algebra C(To, K), with v0-topology_<k-topology
(compact-open), of all continuous complex functions on a completely
regular space To.

Proof. The algebra A is equivalent to a subalgebra S o C(T, K),
where T= [J Q is the union of mutually disjoint compact sets Q

[8, p. 178]. We denote V(x)>_U(x) for all xeA by V_>U. A func-
tion f e C(T, K) belongs to S if and only if f(M)=fv(Mv) for all
V>_ U, f being the restriction o f on Q, Mv=M for M e Q and
the natural projection rom Q to Q.

It ollows rom the lemma that each f e S has a continuous exten-
sion f over fiT. Denote by S the set o all f or f e S and let L be
the class o subsets L o fit defined by L=(t;f e S implies f(t)
=f(m), t fiT}, (m e fiT). A subset F of L is said to be closed if and
only if the union of L e F is closed in fiT. The mapping a"

is continuous and the a-images Q$ of Q are compact sets in the topo-
logical space To, the a-image of T. The subalgebra S of C(T, K) is a
subalgebra S’ of C(To, K); while S’ endowed with the uniform topolo-
gy on the compact sets Q$ is equivalent to the algebra A.

On the other hand an arbitrary continuous function f’ on To is
continuous on T and satisfies the condition’f(M)=f(M) if V>_ U
and Mv-M. Then f’ e S’ and S’=C(T0, K).

Definition 1. Let /be the set of all closed maximal ideals M in
a topological .algebra A. The topology o C(ff/, K) defined by the uni-
form convergence on the closed equicontinuous subsets of /is called
Michael’s topology.

Corollary I (Michael). A complete commutative *-algebra A
with unity e is equivalent to C(/, K) under Michael’s topology.

Proof. There is one to one correspondence between the closed
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maximal ideals of A and the continuous multiplicative linear func-
tionals f on A satisfying the condition f(e)--1, and also to each semi-
norm V there associates a closed, convex, symmetric, and radial at 0
subsets C,-{x’l V(x) _<1, x e A} of A [4]. A closed set F of continu-
ous multiplicative linear functionals fcorresponding to the closed maxi-
mal ideals in Qr is equicontinuous on account of If(x)]_f(e)V(x)<_l
for x e Cr, f e F. Conversely, a closed set F of continuous multiplica-
tive linear functionals defined by {f" f(x)l <_1, f(e)-l, x e Cr} for
some closed, convex, symmetric, and radial at 0 set Cr in A associated
with a seminorm V is a closed subset G of Qr. The topology of uni-
form convergence on the closed equicontinuous set F is the same as
the topology defined by the seminorm on G.

Definition 2. A m-barrel in a LMC algebra is a barrel which is
m-convex. A LMC algebra is called m-barrelled if every m-barrel is
a neighborhood of 0.

The following is a consequence of an observation that to each
seminorm there corresponds a compact set in T and conversely (see
Proof of Theorem 1).

Corollary 2. A complete commutative seminormed *-algebra A
is equivalent to C(To, K) of all continuous complex function on a com-
pletely regular space To under k-topology if and only if A is m-bar-
relled.

2. Naimark’s problem. Theorem 2. The necessary and suf-
ficient condition that a complete seminormed commutative *-algebra A
satisfying" V(xx*)>_krV(x)V(x*), V e cf?, be equivalent to C(T, k),
with k-topology, of all continuous complex functions on a locally com-
pact Hausdroff space To is"

To any closed maximal ideal M0 in A, there exist x0 e M0 and e0
such that all closed maximal ideals M satisfying Ixo(M) l_e contain a
kernel ideal E.

Proof. Necessity. Let T be a locally compact Hausdorff space
and A be equivalent to C(T, K) under k-topology. M0 e T has an open
neighborhood N with compact closure . There exists a real func-
tion Xo e C(T, K) with xo(Mo)-O and x0(M)-I for M e CN. The set
G= {M;I x(M) <_e 1} is compact and is the support of a seminorm V.
Since there is one to one correspondence between the closed maximal
ideals in C(T, K) and the points in To [5, p. 325], the continuous func-
tions vanishing on G constitute the kernelideal of the seminorm V0,
contained in all closed maximal ideals M which satisfy the condition
xo(M)

_.
Suliciency. It suffices to prove the local compactness of the

space To. As E is the kernel ideal of a seminorm V0, contained in all
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closed maximal ideals M satisying Ix(M)lge, the set
M e Qo} consists of all closed maximal ideals in A subjected to the
condition Ix(M) l_e. Let a be the same mapping from the space T to
To as in the proof of the Theorem 1. The a-mapping restricted on
denoted by at, is one to one and continuous, and is therefore a
homeomorphism between y and a(y) on account o the compactness
y. Let N be the interior o a. Then a(N) is an open neighborhood
of a(Mo) in To and the closure of a(N) in To is a(’) which is compact.
The local compactness of To is proved.

Theorem :. A complete commutative semi-normed *-algebra A
with a family c(? of semi-norms is equivalent to the algebra C(T, K)
with k-topology, of all complex continuous functions on a locally com-
pact Hausdorff space T i and only if or each V0 c(? there is x0 e A
such that sup [x0(M)l=2, x0(M0)-0 for some closed maximal ideal

Me/

M0 belonging to the support of V0, and =sup {V’V(xo)<_l, V e
is a seminorm in

Proof. Necessity. By Theorem 2, there is x0 e M0 to each closed
maximal ideal M0 in A such that all the closed maximal ideals satis-
fying xo(M)l _2 contain a kernel ideal E of some seminorm V0.=sup {V" V(xo)_ 1, V e c;} satisfies the relation (x) sup {I x(M)
Ixo(M) _1, M e Qo} or all x e A. Then the compact set {M"
_< 1, M e Qo} in To is the support of and is a seminorm in

Sufficiency. Let M0 be a closed maximal ideal in A and Z a
kernel ideal of some seminorm V0 contained in M0. We denote the set
of closed maximal ideals M in A a .satisfying xo(M)l<_e 1/2 for the
x0 e M0 by W. Each M e W contains a kernel ideal Z. G={M" xo(M)
_<h 1, h 1/2, M e (o} is a compact set in (o and is a support of some
seminorm V’. Zr, is contained in M since M belongs to G. V’(xo) 1
implies V>_ V’ and Z Z,. Then ZuM. Hence all the closed ma-
ximal ideals in E contain Z and the local compactness of To ollows
from Theorem 2.

Let _L" be the set of all closed, symmetric, m-convex, and radial
at 0 neighborhoods of LMC algebra A. It is clear that the closed m-
convex set associated with in Theorem 3 is given by C= C.

Cv e .Z

Theorem 3 can be put into the ollowing equivRlent orm.
Theorem ’. A complete commutative -algebrR with R Rmily

c- o seminorms is equivRlent to the algebrR C(T0, K), with k-topolo-
gy, o Rll complex continuous unctions on a locally compRct Rus-
dorf space 0 i Rnd only i, to each 0 (A), there is an 0 0
such that (1) sup I0()I --2 Rnd (2) Cv is neighborhood o 0.
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