144. A Remark on a Problem of M. A. Naimark

By Chien WENJEN

California State College at Long Beach, U.S.A.

(Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1968)

Gelfand and Naimark [6] characterized the algebra of all continuous complex-valued functions on a compact Hausdorff space as a commutative Banach *-algebra which satisfies the condition $||xx^*||$ $= ||x^*|| \cdot ||x||$: while Aren's generalization of the Gelfand-Naimark theorem is that a complete commutative seminormed *-algebra with a partition of unity is equivalent to the algebra of all continuous complex-valued functions on a locally compact paracompact space C(T, K)[1]. A question is posed by Naimark in his treatise [6]: Is it possible to characterize all complete commutative seminormed *-algebras which are equivalent to (topologically equivalent to algebraically *-isomorphic) the algebras of all continuous complex-valued functions on locally compact Hausdorff spaces? Even though some more general result in this direction was obtained by Sha [6, 1964], it seems the problem remains open. Incidentally a solution of the problem was given by the writer [8, p. 182]. The purpose of this note is to present a modified proof of the solution and a second characterization in terms of seminorms.

"Seminormed algebra" and "locally multiplicatively convex algebra" (LMC) will be used synonymically in this paper. A subset Σ of an algebra is said to multiplicatively convex (*m*-convex) if $\Sigma\Sigma \subset \Sigma$. We assume the family CV of seminorms of an algebra is so large that $V \in CV$, $U \leq V$ imply $U \in CV$. Some basic theorems and definitions employed hereafter are referred to [1], [3], and [4].

1. Functional representation. Lemma. If βX is the Stone-Čech compactification of a completely regular space X, then any unbounded continuous real function of f on X can be continuously extended to an extended function \overline{f} over βX which admits $+\infty$ or $-\infty$ on some subsets of $\beta X - X$.

First proof. Let B be the two-point $(\pm \infty)$ compactification of the real line. Then B is a compact Hausdorff space and f is a continuous mapping from X into B. By the Stone-Čech compactification theorem [2, p. 153] f has a continuous extension \overline{f} on βX and the lemma is proved.

Second proof. Suppose

C. WENJEN

[Vol. 44,

$$f_n(x) = \begin{cases} n & f(x) \ge n, \\ f(x) & \text{if } -n < f(x) < n, \\ -n & f(x) \le -n. \end{cases}$$

Let $p \in \beta X - X$ and

$$N_n(p) = \{x : |\bar{f}_n(x) - \bar{f}_n(p)| < \varepsilon < |, x \in X\}$$

where \overline{f}_n is the continuous extension of f_n over βX . In case f is bounded on $N_n(p) \cap X$, f and f_m coincide on $N_n(p) \cap X$ for some m and f can be continuously extended to a finite value at p. Otherwise f is unbounded on $N_n(p) \cap X$ for all n and ε and f(x) is either >n or <-non $N_n(p) \cap X$ for all large n. Then \overline{f} assumes $+\infty$ or $-\infty$ at p.

Theorem 1. A complete commutative seminored *-algebra A with unity and satisfying the condition :

 $V(xx^*) \ge k_V V(x) V(x^*), \quad V \in \mathcal{CV}, \quad x \in A,$

is equivalent to the algebra $C(T_0, K)$, with τ_0 -topology $\leq k$ -topology (compact-open), of all continuous complex functions on a completely regular space T_0 .

Proof. The algebra A is equivalent to a subalgebra S of C(T, K), where $T = \bigcup_{V \in \mathcal{O}} Q_V$ is the union of mutually disjoint compact sets Q_V

[8, p. 178]. We denote $V(x) \ge U(x)$ for all $x \in A$ by $V \ge U$. A function $f \in C(T, K)$ belongs to S if and only if $f_V(M_V) = f_U(M_U)$ for all $V \ge U$, f_V being the restriction of f on Q_V , $M_U = \pi M_V$ for $M_V \in Q_V$ and the natural projection from Q_V to Q_U .

It follows from the lemma that each $f \in S$ has a continuous extension \overline{f} over βT . Denote by \overline{S} the set of all \overline{f} for $f \in S$ and let L be the class of subsets L_m of βT defined by $L_m = \{t; \overline{f} \in \overline{S} \text{ implies } \overline{f}(t) = \overline{f}(m), t \in \beta T\}$, $(m \in \beta T)$. A subset F of L is said to be closed if and only if the union of $L_m \in F$ is closed in βT . The mapping $\sigma: \beta T \rightarrow L$ is continuous and the σ -images \overline{Q}'_V of \overline{Q}_V are compact sets in the topological space T_0 , the σ -image of T. The subalgebra S of C(T, K) is a subalgebra S' of $C(T_0, K)$; while S' endowed with the uniform topology on the compact sets \overline{Q}'_Y is equivalent to the algebra A.

On the other hand an arbitrary continuous function f' on T_0 is continuous on T and satisfies the condition: $f_V(M_V) = f_U(M_U)$ if $V \ge U$ and $M_U = \pi M_V$. Then $f' \in S'$ and $S' = C(T_0, K)$.

Definition 1. Let \mathcal{M} be the set of all closed maximal ideals M in a topological algebra A. The topology of $C(\mathcal{M}, K)$ defined by the uniform convergence on the closed equicontinuous subsets of \mathcal{M} is called *Michael's topology*.

Corollary 1 (Michael). A complete commutative *-algebra A with unity e is equivalent to $C(\mathcal{M}, K)$ under Michael's topology.

Proof. There is one to one correspondence between the closed

652

maximal ideals of A and the continuous multiplicative linear functionals f on A satisfying the condition f(e)=1, and also to each seminorm V there associates a closed, convex, symmetric, and radial at 0 subsets $C_V = \{x : |V(x)| \le 1, x \in A\}$ of A [4]. A closed set F of continuous multiplicative linear functionals f corresponding to the closed maximal ideals in Q_V is equicontinuous on account of $|f(x)| \le f(e)V(x) \le 1$ for $x \in C_V$, $f \in F$. Conversely, a closed set F of continuous multiplicative linear functionals defined by $\{f : |f(x)| \le 1, f(e)=1, x \in C_V\}$ for some closed, convex, symmetric, and radial at 0 set C_V in A associated with a seminorm V is a closed subset G of \bar{Q}_V . The topology of uniform convergence on the closed equicontinuous set F is the same as the topology defined by the seminorm on G.

Definition 2. A *m*-barrel in a LMC algebra is a barrel which is m-convex. A LMC algebra is called *m*-barrelled if every *m*-barrel is a neighborhood of 0.

The following is a consequence of an observation that to each seminorm there corresponds a compact set in T and conversely (see Proof of Theorem 1).

Corollary 2. A complete commutative seminormed *-algebra A is equivalent to $C(T_0, K)$ of all continuous complex function on a completely regular space T_0 under k-topology if and only if A is m-barrelled.

2. Naimark's problem. Theorem 2. The necessary and sufficient condition that a complete seminormed commutative *-algebra Asatisfying: $V(xx^*) \ge k_V V(x) V(x^*)$, $V \in \mathbb{C}V$, be equivalent to C(T, k), with k-topology, of all continuous complex functions on a locally compact Hausdroff space T_0 is:

To any closed maximal ideal M_0 in A, there exist $x_0 \in M_0$ and $\varepsilon > 0$ such that all closed maximal ideals M satisfying $|x_0(M)| \le \varepsilon$ contain a kernel ideal E.

Proof. Necessity. Let T be a locally compact Hausdorff space and A be equivalent to C(T, K) under k-topology. $M_0 \in T$ has an open neighborhood N with compact closure \overline{N} . There exists a real function $x_0 \in C(T, K)$ with $x_0(M_0)=0$ and $x_0(M)=1$ for $M \in CN$. The set $G=\{M; |x(M)| \le \varepsilon < 1\}$ is compact and is the support of a seminorm V. Since there is one to one correspondence between the closed maximal ideals in C(T, K) and the points in T_0 [5, p. 325], the continuous functions vanishing on G constitute the kernelideal of the seminorm V_0 , contained in all closed maximal ideals M which satisfy the condition $|x_0(M)| \le \varepsilon$.

Sufficiency. It suffices to prove the local compactness of the space T_0 . As E is the kernel ideal of a seminorm V_0 , contained in all

No. 7]

closed maximal ideals M satisying $|x(M)| \leq \varepsilon$, the set $\gamma = \{M : |x(M)| \leq \varepsilon$, $M \in \bar{Q}_{r_0}\}$ consists of all closed maximal ideals in A subjected to the condition $|x(M)| \leq \varepsilon$. Let σ be the same mapping from the space T to T_0 as in the proof of the Theorem 1. The σ -mapping restricted on γ , denoted by σ_{γ} , is one to one and continuous, and is therefore a homeomorphism between γ and $\sigma(\gamma)$ on account of the compactness of γ . Let N be the interior of σ . Then $\sigma(N)$ is an open neighborhood of $\sigma(M_0)$ in T_0 and the closure of $\sigma(N)$ in T_0 is $\sigma(\gamma)$ which is compact. The local compactness of T_0 is proved.

Theorem 3. A complete commutative semi-normed *-algebra Awith a family \mathcal{CV} of semi-norms is equivalent to the algebra C(T, K)with k-topology, of all complex continuous functions on a locally compact Hausdorff space T if and only if for each $V_0 \in \mathcal{CV}$ there is $x_0 \in A$ such that $\sup_{M \in \mathcal{M}} |x_0(M)| = 2$, $x_0(M_0) = 0$ for some closed maximal ideal M_0 belonging to the support of V_0 , and $\bar{V} = \sup\{V : V(x_0) \leq 1, V \in \mathcal{CV}\}$ is a seminorm in \mathcal{CV} .

Proof. Necessity. By Theorem 2, there is $x_0 \in M_0$ to each closed maximal ideal M_0 in A such that all the closed maximal ideals satisfying $|x_0(M)| \leq 2$ contain a kernel ideal E of some seminorm V_0 . $\bar{V} = \sup \{V: V(x_0) \leq 1, V \in \mathcal{O}\}$ satisfies the relation $\bar{V}(x) = \sup \{|x(M)| : |x_0(M)| \leq 1, M \in \bar{Q}_{V_0}\}$ for all $x \in A$. Then the compact set $\{M: |x_0(M)| \leq 1, M \in \bar{Q}_{V_0}\}$ in T_0 is the support of \bar{V} and \bar{V} is a seminorm in \mathcal{O} .

Sufficiency. Let M_0 be a closed maximal ideal in A and Z_{V_0} a kernel ideal of some seminorm V_0 contained in M_0 . We denote the set of closed maximal ideals M in A a satisfying $|x_0(M)| \leq \varepsilon < \frac{1}{2}$ for the $x_0 \in M_0$ by W. Each $M_1 \in W$ contains a kernel ideal Z_{V_1} . $G = \{M : x_0(M) \leq h < 1, h > \frac{1}{2}, M \in \bar{Q}_{V_0}\}$ is a compact set in \bar{Q}_{V_0} and is a support of some seminorm V'. $Z_{V'}$ is contained in M_1 since M_1 belongs to G. $V'(x_0) < 1$ implies $\bar{V} \geq V'$ and $Z_{\bar{V}} \subset Z_{V'}$. Then $Z_{\bar{V}} \subset M_1$. Hence all the closed maximal ideals in E contain $Z_{\bar{V}}$ and the local compactness of T_0 follows from Theorem 2.

Let \mathcal{L} be the set of all closed, symmetric, *m*-convex, and radial at 0 neighborhoods of LMC algebra A. It is clear that the closed *m*convex set associated with \bar{V} in Theorem 3 is given by $C_{\bar{V}} = \bigcap_{\substack{\mathcal{C}_{V} \in \mathcal{L} \\ x_{0} \in \mathcal{C}_{V}}} \mathcal{C}_{v}$.

Theorem 3 can be put into the following equivalent form.

Theorem 3'. A complete commutative *-algebra A with a family \mathbb{CV} of seminorms is equivalent to the algebra $C(T_0, K)$, with k-topology, of all complex continuous functions on a locally compact Hausdorff space T_0 if and only if, to each $M_0 \in \mathcal{M}(A)$, there is an $x_0 \in M_0$ such that (1) $\sup_{M \in \mathcal{M}} |x_0(M)| = 2$ and (2) C_V is a neighborhood of 0.

References

- [1] Arens, R.: A generalization of normed rings. Pac. J. Math., 2, 455-471 (1952).
- [2] Kelley, J.: General Topology. Van Nostrand (1955).
- [3] Kelley, J. L., and Namioka, I.: Linear Topological Spaces. Van Nostrand (1963).
- [4] Michael, E.: Locally multiplicatively-convex topological algebras. Mem. Amer. Math. Soc., 2, 79 (1952).
- [5] Morris, P. D., and Wulbert, D. E.: Functional representation of topological algebras. Pac. J. Math., 22, 323-337 (1967).
- [6] Naimark, M. A.: Normed Rings. Groningen, (1959) and (1964).
- [7] Rickart, C.: General Theory of Banach Algebras. Van Nostrand (1960).
- [8] Wenjen, C.: On seminormed *-algebras. Pac. J. Math., 8, 177-186 (1958).
- [9] —: Characterizations and representations of seminormed algebras. I, II. Notices of Amer. Math. Soc., Vol. 12, nos. 2 and 3 (1965).