128. A Milnor Conjecture on Spin Structures

By Seiya SASAO

Department of Mathematics, Tokyo Institute of Technology

(Comm. by Kenjiro SHODA, M.J.A., Sept. 12, 1968)

Let ξ denote a principal SO(n)-bundle over a CW-complex B and let $E(\xi)$ denote the total space of ξ . A spin structure on ξ is a pair (η, f) which satisfies

(1) A principal bundle η over B with the spinor group Spin(n) as structural group; and

(2) A map $f: E(\eta) \rightarrow E(\xi)$ such that the following diagram is commutative.

$$\begin{array}{c}
E(\eta) \times \operatorname{Spin}(n) \to E(\eta) \\
\downarrow^{f \times \lambda} & \downarrow^{f} \\
E(\xi) \times SO(n) \longrightarrow E(\xi)
\end{array} \xrightarrow{} B.$$

Here λ denotes the standard homomorphism from Spin(*n*) to SO(n) and horizontal lines denote the right translation. A second spin structure (η', f') on ξ is identified with (η, f) if there exists an isomorphism g from η' to η so that $f \circ g = f'$. Then J. Milnor stated the following conjecture [1, pp. 198-203]:

If (η, f) and (η', f') are two spin structures on the same SO(n)bundle, with $n > \dim B$, then η is necessarily isomorphic to η' .

In this note we shall present the affirmative answer when B is compact connected. By Milnor we have the following

Lemma [1, p. 199]: If ξ admits a spin structure then the number of distinct spin structures on ξ is equal to the number of elements in $H^{1}(B; \mathbb{Z}_{2})$.

Now the following lemma is clear.

Lemma 1. If ξ admits two spin structures (η, f) and (η', f') such that η is isomorphic to η' then there exists a spin structure (η, f') on ξ which is isomorphic to (η', f') .

Let p_{ξ} denote the projection map of the bundle ξ . If two spin structures (η, f_1) , (η, f_2) are given, from $p_{\eta} = p_{\xi} f_1 = p_{\xi} f_2$, we have a map $g: E(\eta) \rightarrow SO(n)$ defined by $f_1(x) = f_2(x) \cdot g(x)$ for $x \in E(\eta)$. Here \cdot denotes the right translation. Clearly g satisfies $g(x \cdot h) = \lambda(h)^{-1} \times g(x)$ $\times \lambda(h)$ for $h \in \text{Spin}(n)$ where \times denotes the group multiplication. Conversely g is a map as above and let (η, f) be a spin structure on ξ . Then $(\eta, f \cdot g)^{(1)}$ is also a spin structure on ξ . And moreover let g' be another map such as g. Then $(\eta, f \cdot g)$ is isomorphic to $(\eta, f \cdot g')$ if

¹⁾ Of course the map $f \cdot g$ is defined by $(f \cdot g)(x) = f(x) \cdot g(z)$.

and only if there exists a map $\varphi: E(\eta) \rightarrow \operatorname{Spin}(n)$ which satisfies $\varphi(x \cdot h)$ $=h^{-1}\times\varphi(x)\times h$ and $g(x)=g'(x)\times\lambda(\varphi(x))$. Now we define two groups $\langle E(\eta), SO(n) \rangle$ and $\langle E(\eta), Spin(n) \rangle$ as follows:

 $\langle E(\eta), SO(n) \rangle = \{g: E(\eta) \rightarrow SO(n), g(x \cdot h) = \lambda(h)^{-1} \times g(x) \times \lambda(h)\}$ $\langle E(\eta), \operatorname{Spin}(n) \rangle = \{ \varphi : E(\eta) \rightarrow \operatorname{Spin}(n), \varphi(x \cdot h) = h^{-1} \times \varphi(x) \times h \}.$

Obviously λ induces a homomorphism $\lambda_* : \langle E(\eta), \operatorname{Spin}(n) \rangle \rightarrow \langle E(\eta), \rangle$ SO(n) and if B is connected λ_* is injective. Let $\langle \eta \rangle$ denote the set of spin structures on ξ having η as the bundle of structures. By the above argument we have

Lemma 2. The number of $\langle \eta \rangle$ is equal to the number of cosets of $\langle E(\eta), SO(n) \rangle$ by $\lambda_* \langle E(\eta), Spin(n).$

Let (η, f_0) be a spin structure on ξ and define the group

 $\langle E(\xi), SO(n) \rangle = \{ \psi ; E(\xi) \rightarrow SO(n), \psi(x \cdot g) = g^{-1} \times \psi(x) \times g \}.$

It is obvious that f_0 induces the homomorphism f_{0*} ; $\langle E(\xi), SO(n) \rangle$ $\rightarrow \langle E(\eta), SO(n) \rangle$ defined by $f_{0*}(\psi) = \psi \circ f_0$. Since the kernel of λ is contained in the center of Spin(n) we have

Lemma 3. When B is compact f_{0*} is the isomorphism.

Now consider the inverse image of $\lambda_* \langle E(\eta), SO(n) \rangle$ by f_{0*} . Let $\langle\!\langle E(\xi), SO(n) \rangle\!\rangle$ denote the subgroup of $\langle E(\xi), SO(n) \rangle$ consisting on elements which have a lifting: $E(\xi) \rightarrow \operatorname{Spin}(n)$. Then analogously to Lemma 3 we have

Lemma 4. $f_{0*}\langle\!\langle E(\xi), SO(n)\rangle\!\rangle = \lambda_*\langle\!\langle E(\eta), \operatorname{Spin}(n)\rangle\!\rangle.$

Combining Milnor's lemma with the above lemmas we have

Lemma 5. When B is compact and connected the number of elements of $\mathcal{H}^1(B, \mathbb{Z}_2)$ is equal to the product of the number of cosets of $\langle E(\xi), SO(n) \rangle$ by $\langle \langle E(\xi), SO(n) \rangle$ with the number of bundles which give a spin structure on ξ .

Let B_G denote the classifying space for a topological group G and let x_{ξ} denote the characteristic map: $B \rightarrow B_{g}$ for a G-bundle ξ . The homomorphism λ : Spin(n) \rightarrow SO(n) usually induces the correspondence $B_{\lambda}: \pi(B, B_{\text{spin}(n)}) \rightarrow \pi(B, B_{SO(n)})$. Then it is clear that the number of the inverse image of x_{ε} by B_{λ} is equal to the number of bundles which give a spin structure on ξ . If n is larger than dim B, then $\pi(B, B_{SO(n)}), \pi(B, B_{Spin(n)})$ are equal to $\pi(B, B_{SO(\infty)}), \pi(B, B_{Spin(\infty)})$ respectively. Hence we give a group structure to $\pi(B, B_{\text{spin}(n)})$ and $\pi(B, B_{so(n)})$ so that B_{λ} is a homomorphism. These considerations show that the number of bundles which give a spin structure on ξ is independent on ξ , therefore the number of cosets of $\langle E(\xi), SO(n) \rangle$ by $\langle\!\langle E(\xi), SO(n) \rangle\!\rangle$ is also free from ξ . That is to say the case is only necessary for our purpose that ξ is trivial. Now we suppose that ξ is trivial. Let $\{B, SO(n)\}$ denote the group consisting on all maps: $B \rightarrow SO(n)$ and let ρ denote the standard cross-section : $B \rightarrow E(\xi)$. It is

easily shown that the homomorphism $\rho_* : \langle E(\xi), SO(n) \rangle \rightarrow \{B, SO(n)\}$ is bijective where ρ_* is defined by $\rho_*(\phi) = \phi \circ \rho$. Clearly $\rho_* \langle \langle E(\xi), SO(n) \rangle \rangle$ is contained in $\lambda_* \{B, \text{Spin}(n)\}$.

Conversely, for a map $\lambda \psi$, $\psi: B \to \operatorname{Spin}(n)$, define a map $\phi: E(\xi) \to SO(n)$ by $\phi(b, g) = g^{-1} \times \lambda(\psi(b)) \times g$. Then ϕ is an element of $\langle E(\xi), SO(n) \rangle$ such that $\rho_*(\phi) = \lambda \psi$. Let $\tilde{\psi}$ be a map: $E(\xi) \to \operatorname{Spin}(n)$ defined by $\tilde{\psi}(b, g) = h^{-1} \times \psi(b) \times h$ for $\lambda(h) = g$. Since the kernel of λ is contained in the center of $\operatorname{Spin}(n)$ $\tilde{\psi}$ is well defined and continuous. By $\lambda \tilde{\psi} = \phi$ we can know that ϕ is an element of $\langle E(\xi), SO(n) \rangle$, i.e., we have

Lemma 6. ρ_* is bijective and maps the subgroup $\langle\!\langle E(\xi), SO(n) \rangle\!\rangle$ onto the subgroup $\lambda_*\{B, Spin(n)\}$.

Let $X_{\lambda^{2}}$ denote the cohomology class of $\mathcal{H}^{1}(SO(n); \mathbb{Z}_{2})$ which represents the \mathbb{Z}_{2} -bundle Spin $(n) \rightarrow SO(n)$. Consider a homomorphism $\Phi: \{B, SO(n)\} \rightarrow \mathcal{H}^{1}(B, \mathbb{Z}_{2})$ defined by $\Phi(\phi) = \phi^{*}(X_{\lambda})$. Now we suppose that $\Phi(\phi) = 0$. It is known that if we identify $\mathcal{H}^{1}(SO(n), \mathbb{Z}_{2})$ with $\operatorname{Hom}(\pi_{1}(SO(n)), \pi_{1}(SO(n))) X_{\lambda}$ is correspond to the identity. Since B is connected, we can also identify $\mathcal{H}^{1}(B, \mathbb{Z}_{2})$ with $\operatorname{Hom}(H_{1}(B), \pi_{1}(SO(n)))$. Then $\phi^{*}(X_{\lambda})$ is interpreted as the composite homomorphism :

 $\mathcal{H}_{1}(B) \xrightarrow{\phi_{*}} \mathcal{H}_{1}(SO(n)) \xleftarrow{iso} \pi_{1}(SO(n)) \xrightarrow{id} \pi_{1}(SO(n)).$

Hence $\Phi(\phi) = 0$ implies that the homomorphism $\phi_* : \pi_1(B) \to \pi_1(SO(n))$ is trivial, i.e., ϕ can be lifted. Hence we have

Lemma 7. ϕ induces the injection :

 $\{B, SO(n)\}/\lambda_*\{B, \operatorname{Spin}(n)\} \rightarrow \mathcal{H}^1(B; \mathbb{Z}_2).$

If $n > \dim B$ we can take the real projective space PR^{n-1} as the classifying space for \mathbb{Z}_2 -bundles over B. On the other hand [2, p. 97] there exists an imbedding $P_n: PR^{n-1} \rightarrow SO(n)$ such that $P_n^*: \mathcal{H}^1(SO(n); \mathbb{Z}_2) \rightarrow \mathcal{H}^1(PR^{n-1}; \mathbb{Z}_2)$ is bijective. Thus we have

Lemma 8. $\Phi: \{B, SO(n)\}/\lambda_*\{B, Spin(n)\} \rightarrow \mathcal{H}^1(B; \mathbb{Z}_2)$ is bijective. From lemmas we obtain our main theorem.

Theorem. Let B be a compact connected CW-complex. If a principale SO(n)-bundle over B admits two spin structures (η, f) and (η', f') , with $n > \dim B$, η is necessary isomorphic to η' .

References

J. Milnor: Spin structures on manifolds. L'Enseignement Math., 9 (1963).
 I. Yokota: J. of Inst. of Poly., Osaka City Univ., 8 (1957).

²⁾ Non-zero element of $\mathcal{H}^1(SO(n); \mathbb{Z}_2) \cong \mathbb{Z}_2$.