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1. Introduction. Let be a Frchet space (cf. Treves [12],
Chap. 10, pp. 85-94), and let _L’() be the space of continuous linear
transformations of into itself. Let (T(), t e R+}, T(t) :R+-./7(),
be a one-parameter family of continuous operators. The family
{T(t), t e R/} is called a semigroup of operators if
( 1 T(s + t)- T(s) T(t), s, e R+, T(O)- I.
The infinitesimal generator of the semigroup T() is defined as
( 2 ) A-s--lim(T(h)--I) h,

k--.O

and _q)(A) is the set of all f e for which the above limit exists. The
resolvent operator is difined as the abstract Laplace transform of
T(t), that is

3 ) R(R;A)X--.I:e-*T(t)f dt, f e .
The theory of semigroups on Frchet spaces, which is a generalization
of the theory of semigroups on Banach spaces, has been developed by
Komatsu [5], Mate [6], Miyadera [7], Schwartz [10], and Yosida [14].
The study of the approximation of semigroups on Banach spaces was
initiated by Trotter, [13] (cf. also Kato [4]). We refer to Hasegawa
[2], haru [9] for other results on the aproximation of semigroups on
Banach spaces, and to haru [8] and Yosida [14] for the generaliza-
tion of Trotter’s results to locally convex topological vector spaces.

In this paper we state some results on the approximation of semi-
groups on Frchet spaces, and consider as a concrete example, the
approximation of a semigroup on the Frchet space of infinitely dif-
ferentiable functions, utilizing Chlodovsky’s [1] generalizations of
Bernstein polynomials on an infinite interval. The proofs subsidiary
results will be given elsewhere. We remark that Seidman [11] inde-
pendently obtained some of our results, following the methodology of
Yosida.

2. Convergence of semigroups on Frchet spaces. Approxima-
tion theorems. In this section we consider a sequence of Frchet
spaces {n},l.C’’’CnCn+l’’’, and a countable family of
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seminorms {pr, y e F} which topologizes and n, n=l, 2, {}
is called a sequence of Frgche$ spaces approximating 5 if there exists
a sequence of linear maps {P}, P "-Sn, such that or each f e
and 7eF
( 4 ) Pr(Pf) <--Pr(f), lira Pr(f--Pf)=0.
Given a sequence of operators (A}, A"-, n-l, 2,..., and an
operator A" -5, by s-lim A-A we shall understand that for each

f e and each e F, lira pr(APnf-PAf)-O.
We now state the two basic approximation theorems.
Theorem 1. Let {T(t), t e R+), Tn(t) Y.--En, n--l, 2, ..., be a

sequence of semigroups of operators of class (Co)with associated re-
solvent operators {Rn()} satisfying the following conditions" for each
e F and f e

( 5 ) pr(T(t)f)

_
Mrpr(fn)

M being independent of t and n,
( 6 pr(2R(2)f) _Mrpr(f), m-1, 2, ...,
( 7 lim pr[(2R(2) I)f] O,

( 8 ) Rn()-R(/)=(/-)R()Rn(/), , Z
If there exists a resolvent operator R(2), satisfying the conditions
(6)-(8);and such that s-lim R(2)-R(2), then s-lim T(t)-T(t), where

{T(t), t e R/} is a semigroup of class (Co) on with resolvent operator
R().

The stability condition (5) may be expressed in a more general
form, and then the following theorem holds.

Theorem 2. Let {Tn(t), t e R+}, Tn(t) -, n--l, 2, ..., be a
sequence of semigroups of operators of class (Co)with associated in-
finitesimal generators {A} satisfying the following conditions" (i) for
each e F and for each f e n, Pr(Tn(t)fn)<Mre Pr(fn), where M and
a are independent of n and t, (ii) A=limA is densely defined,

(iii) for some 2a, .(2I-A) is dense in . Then the closure of A is
the infinitesimal generator of a semigroup T(t) of class (Co), and
T(t)-- s-lira Tn(t).

3. Approximation by discrete parameter semigroups. An oper-
ator on , whose powers are uniformly locally bounded may be utilized
to construct a semigroup depending upon a parameter varying in a
discrete set. We state a lemma which gives a method of constructing
a discrete parameter semigroup.

Lemma. Let T’Y-., be an operator such that for each 7 e F
and for each f e , r(Tf) _Mp(f), k=1,2,.... Then, for hO,
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A=(T--I)/h is the infinitesimal generator of a semigroup

S(t)= F, (tA) / k e-/ o t T / k
/=0 --ch th=/or e=ch V e F =d / , (S(t)/) KM(y).

The parameter may be allowed to vary in a suitable discrete set;
this device is useful in approximation theory. We now state an
approximation theorem which can be deduced from Theorem 2 and
Lemma.

Theorem 3. Let h, be eqence o/ober coeg-

for each e F and for each f e n, pr(Tf) re P(fn), where M
and a are independent of n and k. Let An-(Tn--I)/hn. Suppose
that (i)A=lim A is densely defined, (ii) for some fla, (flI-A) is

dense in . Then the closure of A is the infinitesimal generator of a
semigroup S(t)- lim T[t/hn].

4. Approximation of a semigroup of operators on a space of
infinitely differentiable functions. Consider the Frchet space
o all uncti0ns f($), $ e R, having the following properties" (a)

sup ]f($)]gM](bn) where b=o(n), bO, and {bn} is a strictly
(-bn, n)

monotonic increasing sequence, and M(b)e-/ 0 for each a>0
(b) the amily of seminorms {Pn(’)} is defined by p(f)= sup [f($)],

(-bn,b n)
n-1,2,... (c) f is infinitely differentiable at each eR, and

P .d f() K(f()) where the eonstan K is independent of m

and . Consider the differential oerator D g/d then D d /g,
m-1,2,.... I follows ha S(t)=e-

oerators on , with infinitesimal generator A-D-I.
Let be he saee generated by the se of polynomials o degree, satisfying the conditions (a)-(e). hen . Consider he oper-

ators P" defined by

Nrom he results of Chlodovsky [1], it follows that the oerators P
satisfy the condition (). Consider now he difference operator

Af()-(f()-f(--h))/h, for O<< b,
(f( +h-f(/h, or b< 0,

where O<h<b/. hen S(t)=e

oerators on , with infinitesimal generator A-A-I, =1, ,
I can be roved that S(t)S(t) srongly. his semigrou may be
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regarded as a Frchet space analogue of the semigroup of translations
in the Banach space C[0, oo].
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