168. A Three Series Theorem

By Masako Izumi and Shin-ichi Izumi
Department of Mathematics, The Australian National University, Canberra, Australia
(Comm. by Zyoiti Suetuna, m. J. A., Oct. 12, 1968)

1. We suppose throughout this paper that $\left(m_{n}\right)$ tends to zero monotonically.
J. Meder [1] (cf. S. Kaczmarz [2]) has proved the following

Theorem I. Denote by l_{n}, L_{n}, and \tilde{L}_{n} the first logarithmic means of the three series

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n}, \quad \sum_{n=1}^{\infty} a_{n} m_{n}, \quad \text { and } \quad \sum_{n=1}^{\infty} t_{n} \cdot \Delta^{2} m_{n} \tag{1}
\end{equation*}
$$

respectively, where $t_{n}=s_{1}+s_{2}+\cdots+s_{n}$ and $s_{n}=a_{1}+a_{2}+\cdots+a_{n}$. If

$$
l_{n}=o\left(1 / m_{n}\right) \quad \text { as } \quad n \rightarrow \infty
$$

and

$$
\Delta m_{n}=O\left(m_{n} / n \log n\right) \quad \text { as } \quad n \rightarrow \infty,
$$

then $L_{n}=\tilde{L}_{n}+o(1)$ as $n \rightarrow \infty$.
He raized the problem ([1] P 471) whether this theorem holds also without any additional restriction or not and the problem ([1] P 472) to generalize this theorem by proving it e.g. in the case of weighted means or in the case of the Nörlund method of summation.

Let $p_{n} \geqq 0, \quad p_{1}>0$, and $P_{n}=p_{1}+p_{2}+\cdots+p_{n} \rightarrow \infty$ as $n \rightarrow \infty$. The weighted mean w_{n} of the first series of (1) is defined by

$$
w_{n}=\left(p_{1} s_{1}+p_{2} s_{2}+\cdots+p_{n} s_{n}\right) / P_{n}
$$

Similarly we denote by W_{n} and \tilde{W}_{n} the weighted means of the second and the third series of (1).

The case $p_{n}=1 / n$ is the first logarithmic mean. About the weighted means J. Meder and Z. Zdrojewski [3] proved the following

Theorem II. Suppose that $p_{n}>0,\left(p_{n}\right)$ is convex or concave and

$$
\begin{equation*}
0<\liminf _{n \rightarrow \infty}(n+1) p_{n} / P_{n} \leqq \limsup _{n \rightarrow \infty}(n+1) p_{n} / P_{n}<\infty . \tag{2}
\end{equation*}
$$

If

$$
\begin{equation*}
w_{n}=o\left(m_{n}^{-1}\right) \quad \text { as } \quad n \rightarrow \infty \tag{3}
\end{equation*}
$$

and

$$
\Delta m_{n}=O\left(m_{n} / n\right) \quad \text { as } \quad n \rightarrow \infty,
$$

then $W_{n}=\tilde{W}_{n}+o(1)$ as $n \rightarrow \infty$.
This theorem does not contain Theorem I as a particular case, since the first logarithmic means do not satisfy the condition (2). We shall prove the following

Theorem. Suppose that
(5) $\quad p_{n} \downarrow 0, \quad p_{n} / p_{n+1}=O(1)$ and $\quad P_{n} \rightarrow \infty \quad$ as $n \rightarrow \infty$.

In order that $W_{n}=\tilde{W}_{n}+o(1)$ for all $\left(w_{n}\right)$ satisfying the condition (3) it is necessary and sufficient that

$$
\begin{equation*}
\sum_{k=1}^{n} P_{k} m_{k}^{-1} \Delta m_{k+1}=O\left(P_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{6}
\end{equation*}
$$

Since the first logarithmic means satisfy the condition (5), this theorem gives the solution for the problem P 471 and gives also the solution of P 472 in the case of weighted means. The case $p_{n} \downarrow 0$ in Theorem II is a particular case of this Theorem. For the case $p_{n} \downarrow 0$ we can find a necessary and sufficient condition from the proof of this Theorem, but it is not so simple as (6).
2. Proof of the Theorem. By the definition and Abel's lemma,

$$
\begin{aligned}
& P_{n} W_{n}= \sum_{k=1}^{n} a_{k} m_{k} \sum_{j=k}^{n} p_{j}=\sum_{k=1}^{n}\left(s_{k}-s_{k-1}\right) m_{k} \sum_{j=k}^{n} p_{j} \\
&=\sum_{k=1}^{n-1} s_{k}\left(m_{k} \sum_{j=k}^{n} p_{j}-m_{k+1} \sum_{j=k+1}^{n} p_{j}\right)+s_{n} m_{n} p_{n} \\
&= \sum_{k=1}^{n-1}\left(t_{k}-t_{k-1}\right)\left(m_{k} \sum_{j=k}^{n} p_{j}+m_{k+1} p_{k}\right)+\left(t_{n}-t_{n-1}\right) m_{n} p_{n} \\
&= \sum_{k=1}^{n-2} t_{k}\left(\Delta^{2} m_{k} \sum_{j=k}^{n} p_{j}+\Delta m_{k+1} \cdot p_{k}+\Delta\left(m_{k+1} p_{k}\right)\right) \\
&+t_{n-1}\left(\Delta m_{n-1} \cdot\left(p_{n-1}+p_{n}\right)+m_{n} \Delta p_{n-1}\right)+t_{n} m_{n} p_{n} .
\end{aligned}
$$

Therefore

$$
\begin{align*}
P_{n} W_{n}= & P_{n} \tilde{W}_{n}+\sum_{k=1}^{n-2} t_{k}\left(2 \Delta m_{k+1} \cdot p_{k}+\Delta p_{k} \cdot m_{k+2}\right) \tag{7}\\
& +t_{n-1}\left(\Delta m_{n-1} \cdot\left(p_{n-1}+p_{n}\right)+m_{n} \Delta p_{n-1}-\Delta^{2} m_{n-1} \cdot\left(p_{n-1}+p_{n}\right)\right) \\
& +t_{n}\left(m_{n} p_{n}-\Delta^{2} m_{n} \cdot p_{n}\right) \\
= & P_{n} \tilde{W}_{n}+X_{n}+Y_{n}+Z_{n} .
\end{align*}
$$

Now

$$
P_{n} w_{n}=\sum_{k=1}^{n} a_{k} \sum_{j=k}^{n} p_{j}=\sum_{k=1}^{n} s_{k} p_{k}
$$

and then

$$
\begin{align*}
s_{n} & =p_{n}^{-1}\left(P_{n} w_{n}-P_{n-1} w_{n-1}\right), \\
t_{n} & =\sum_{k=1}^{n} s_{k}=\sum_{k=1}^{n} p_{k}^{-1}\left(P_{k} w_{k}-P_{k-1} w_{k-1}\right) \tag{8}\\
& =P_{n} w_{n} p_{n}^{-1}+\sum_{k=1}^{n-1} P_{k} w_{k} \Delta\left(p_{k}^{-1}\right) .
\end{align*}
$$

Substituting (8) into (7), we get

$$
\begin{aligned}
X_{n}= & \sum_{k=1}^{n-2}\left(P_{k} w_{k} p_{k}^{-1}+\sum_{j=1}^{k-1} P_{j} w_{j} \Delta\left(p_{j}^{-1}\right)\right)\left(2 p_{k} \Delta m_{k+1}+m_{k+2} \Delta p_{k}\right) \\
= & \sum_{k=1}^{n-2} P_{k} w_{k} p_{k}^{-1}\left(2 p_{k} \Delta m_{k+1}+m_{k+2} \Delta p_{k}\right) \\
& +\sum_{k=2}^{n-2}\left(2 p_{k} \Delta m_{k+1}+m_{k+2} \Delta p_{k}\right) \sum_{j=1}^{k-1} P_{j} w_{j} \Delta\left(p_{j}^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{k=1}^{n-2} P_{k} w_{k} p_{k}^{-1}\left(2 p_{k} \Delta m_{k+1}+m_{k+2} \Delta p_{k}\right) \\
& +\sum_{j=1}^{n-3} P_{j} w_{j} \Delta\left(p_{j}^{-1}\right) \sum_{k=j+1}^{n-2}\left(2 p_{k} \Delta m_{k+1}+m_{k+2} \Delta p_{k}\right) \\
= & \sum_{k=1}^{n-2} P_{k} w_{k}\left(2 \Delta m_{k+1}+m_{k+2} p_{k}^{-1} \Delta p_{k}\right. \\
& \left.+2 \Delta\left(p_{k}^{-1}\right) \sum_{j=k+1}^{n-2} p_{j} \Delta m_{j+1}+\Delta\left(p_{k}^{-1}\right) \sum_{j=k+1}^{n-2} m_{j+2} \Delta p_{j}\right)
\end{aligned}
$$

Since we have

$$
\begin{aligned}
& m_{k+2} p_{k}^{-1} \Delta p_{k}+\Delta\left(p_{k}^{-1}\right) \sum_{j=k+1}^{n-2} m_{j+2} \Delta p_{j} \\
& \quad=p_{k}^{-1} \Delta p_{k}\left(m_{k+2}-p_{k+1}^{-1} \sum_{j=k+1}^{n-2} m_{j+2} \Delta p_{j}\right) \\
& \left.\quad=p_{k}^{-1} \Delta p_{k}\left(\Delta m_{k+2}+p_{k+1}^{-1} \sum_{j=k+2}^{n-2} p_{j} \Delta m_{j+1}+p_{n-1} m_{n}\right)\right) \\
& \quad=-\Delta\left(p_{k}^{-1}\right) \sum_{j=k+1}^{n-2} p_{j} \Delta m_{j+1}+p_{k}^{-1} \Delta p_{k} \cdot p_{n-1} m_{n}
\end{aligned}
$$

we get
(9) $\quad X_{n}=\sum_{k=1}^{n-2} P_{k} w_{k}\left(2 \Delta m_{k+1}+\Delta\left(p_{k}^{-1}\right) \sum_{j=k+1}^{n-2} p_{j} \Delta m_{j+1}+p_{k}^{-1} \Delta p_{k} \cdot p_{n-1} m_{n}\right)$.

Similarly,

$$
\begin{aligned}
Y_{n} & =t_{n-1}\left(\left(p_{n-1}+p_{n}\right) \Delta m_{n}+m_{n} \Delta p_{n-1}\right) \\
& =\left(P_{n} w_{n} p_{n}^{-1}+\sum_{k=1}^{n-1} P_{k} w_{k} \Delta\left(p_{k}^{-1}\right)\right)\left(\left(p_{n-1}+p_{n}\right) \Delta m_{n}+m_{n} \Delta p_{n-1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
Z_{n} & =t_{n}\left(p_{n} m_{n}-p_{n} \Delta^{2} m_{n}\right) \\
& =\left(p_{n} m_{n}-p_{n} \Delta^{2} m_{n}\right)\left(P_{n} w_{n} p_{n}^{-1}+\sum_{k=1}^{n-1} P_{k} w_{k} \Delta\left(p_{k}^{-1}\right)\right)
\end{aligned}
$$

By the condition (3), the last term of X_{n} is

$$
\begin{equation*}
p_{n-1} m_{n} \sum_{k=1}^{n-2} P_{k} w_{k} p_{k}^{-1} \Delta p_{k}=o\left(P_{n} \sum_{k=1}^{n-2} \Delta p_{k}\right)=o\left(P_{n}\right) \tag{10}
\end{equation*}
$$

since $p_{k}^{-1} \uparrow$ and $m_{k}^{-1} \uparrow$, and

$$
\begin{equation*}
Y_{n}=o\left(P_{n} m_{n}^{-1} \Delta m_{n}+p_{n} P_{n} \sum_{k=1}^{n-1}\left|\Delta\left(p_{k}^{-1}\right)\right|\right)=o\left(P_{n}\right) \tag{11}
\end{equation*}
$$

since $p_{n-1} / p_{n}=O(1)$, and further,

$$
\begin{equation*}
Z_{n}=o\left(P_{n}+p_{n} P_{n} \sum_{k=1}^{n-1} \Delta\left(p_{k}^{-1}\right)\right)=o\left(P_{n}\right) \tag{12}
\end{equation*}
$$

Collecting (7), (9), (10), (11), and (12), we get

$$
\begin{equation*}
P_{n} W_{n}=P_{n} \tilde{W}_{n}+\sum_{k=1}^{n-2} P_{k} w_{k}\left(2 \Delta m_{k+1}+\Delta\left(p_{k}^{-1}\right) \sum_{j=k+1}^{n-2} p_{j} \Delta m_{j+1}\right) \tag{13}
\end{equation*}
$$

$$
+o\left(P_{n}\right)
$$

Now

$$
\begin{align*}
0 & \leqq-\sum_{k=1}^{n-2} P_{k} m_{k}^{-1} \Delta\left(p_{k}^{-1}\right) \sum_{j=k+1}^{n-2} p_{j} \Delta m_{j+1} \tag{14}\\
& =-\sum_{j=2}^{n-2} p_{j} \Delta m_{j+1} \sum_{k=1}^{j-1} P_{k} m_{k}^{-1} \Delta\left(p_{k}^{-1}\right)
\end{align*}
$$

$$
\begin{aligned}
& \leqq \sum_{j=2}^{n-2} p_{j} \Delta m_{j+1} \cdot P_{j-1} m_{j-1}^{-1} \sum_{k=1}^{j-1}\left|\Delta\left(p_{k}^{-1}\right)\right| \\
& \leqq \sum_{j=2}^{n-2} P_{j-1} m_{j-1}^{-1} \Delta m_{j+1} \leqq \sum_{j=2}^{n-2} P_{j} m_{j}^{-1} \Delta m_{j+1} .
\end{aligned}
$$

Therefore (13) becomes

$$
P_{n} W_{n}=P_{n} \tilde{W}_{n}+o\left(\sum_{k=1}^{n-2} P_{k} m_{k}^{-1} \Delta m_{k+1}\right)+o(1) .
$$

This proves the sufficiency of the condition (6). The necessity of the condition (6) is seen by (13) and (14). Thus the Theorem is proved.

References

[1] J. Meder: On a lemma of S. Kaczmarz. Colloquium Mathematicum, 12, 253-258 (1964).
[2] S. Kaczmarz: Sur la convergence et sommabilité des développements orthogonaux. Studia Mathematica, 1, 87-121 (1929), Lemma 5 (p. 111).
[3] J. Meder and Z. Zdrojewski: On a relation between some special methods of summation. Colloquium Mathematicum, 19, 131-142 (1968).

