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1o We suppose throughout this paper that (m) tends to zero
monotonically.

J. Meder [1] (cf. S. Kaczmarz [2]) has proved the following
Theorem I. Denote by l, L, and L the first logarithmic means

of the three series

(l) EObn, amn, and
=I =I =i

respectively, where t-s+ s. + + 8 and s-a + a. + .. + an. If
ln--O(1/mn) as

and
mn-O(m/n log n) as n-

then Ln-L +o(1) as noo.
He raized the problem ([1] P 471) whether this theorem holds also

without any additional restriction or not and the problem ([1] P 4.72)
to generalize this theorem by proving it e.g. in the case of weighted
means or in the case of the NSrlund method of summation.

Let p>=0, p>0, and Pn--Pi+p:+...+pn--c as nc. The
weighted mean Wn of the first series of (1) is defined by

Wt (PlS1 + P282 +’’" + Pn8n) / Pn"
Similarly we denote by W and W the weighted means of the second
and the third series of (1).

The case p-l/n is the first logarithmic mean. About the
weighted means J. Meder and Z. Zdrojewski [3] proved the following

Theorem II. Suppose that PnO, (Pn) is convex or concave and

0<lim inf (n+ 1)pn/Plim sup (n+ 1)Pn/P< c.(2)

If
(3)
and
(4)

w-o(m) as n-.oo

Jm O(m /n) as n-c

then W-Wn+ o(1) as n-.
This theorem does not contain Theorem I as a particular case,

since the first logarithmic means do not satisfy the condition (2).
We shall prove the ollowing
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Theorem. Suppose that
(5) pO, p/Pn+--O(1) and P--oo as noo.
In order that W-W+ o(1) for all (Wn) satisfying the condition (3) it
is necessary and sufficient that

( 6 , Pm;zlm+-O(Pn) as n.

Since the first logarithmic means satisfy the condition (5), this
theorem gives the solution for the problem P 471 and gives also the
solution of P 472 in the case of weighted means. The case p 0 in
Theorem II is a particular case of this Theorem. For the case p 0
we can find a necessary and sufficient condition from the proof of this
Theorem, but it is not so simple as (6).

2. Proof of the Theorem. By the definition and Abel’s lemma,

PW- am p- (s-s_)m
=1 = =1 =

=18 m p--m+l pj +SnmnP
.= j=+

=1 j=k

t Am +Am,.p+

Therefore

(7)

Now

and then

n-2

PnWn-PnWn+ , t(2dm+.p + Ap. m+)
+ tn-l(Amn-l" (Pn-1 "[-" Pn) + mn,lPn-.--dmn_ (Pn-. - Pn))
-t- tn(mnp,--,:mn. Pn)
P,W, +X,+ Y,+ Zn.

k =1 ,]=1, k=l

8n-- Pl(PnWn-- P,_w,_),

( 8 ) t,-- -- p;(Pw--P_w_)
k=l k=l

.-1

P.wnP; + PwA(P;).
k=l

Substituting (8) into (7), we get

Xn-- Pwp; + F, PwA(p-) (2pAm+l + m+.lp)
l=1, Pwp;l(2pAm/+ m/,Ap)
k=l

-2 k-1

+ , (2pAm++m+Ap) PwA(p-)
k=2 j=l
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n-2, Pwp;l(2pAm++m+lp)
-3 -2

+ Y] PwA(p-) (2pAm++m+p)
j= =j+l

n-2 n-2

+ 2A(p) pAm,+A(p) m,Ap
+

Since we have

we get

9 ) X,- y, Pw 2z/m++ J(p) pJm+--[- PzJP’Pn-mn
=1 j=+l

Similarly,

Y-- t_((p_+ pn)Am + mApn_)
PwP; + PwgA(P;) (Pn- + Pn)Am+ mnAPn_

and

Z tn(pm pzim,)

=(pm--pAm) Pwpx + , PwA(p9
/=1

By the condition (), the last term of X is

(10) 1)-1’ /=1 e/,p-.lp/--o (e =1 ’dPk)- o(e),
since [1 " and m-1 ]’, and

(11) Y- o PmxAm+pP z/(p-91 o(P)
/=1

since p,_/p=O(1), and further,

(1.) -o P+pP , A(p) o(P).

Collecting (7), (9), (10), (11), and (12), we get:
n-2 n-2 )(13) PnWn-PnWn +
k=z j=+

+ o(Pn).
Now

(14)
n-2 n-2

0<=-- , Pm;A(p;) pAm+
/=1

n-2

pAm/ , PmA(p)
=2 /=1
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< pzlmj I" Pj m-1

n-2 n-2

Therefore (13) becomes

This roves he sueieney of the condition (6). he necessity of the
condition (6) is seen by (18) and (14). hus the heorem is roved.
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