211. Generalizations of the Stone-Weierstrass Approximation Theorem*)

By Chien WENJEN
California State College at Long Beach, U.S.A.
(Comm. by Kinjirô KUNUGI, M. J. A., Nov. 12, 1968)

The celebrated Stone-Weierstrass theorem for the continuous functions on compact Hausdorff spaces has been extended to those on more general spaces [1], [3], [4], [8]. The purpose of the present note is to present some generalizations of the theorem and the Stone-Tietze extension theorem to the vector-valued continuous functions on completely regular spaces.

Let X be a completely regular space, C(X,K) the algebra of all complex continuous functions (bounded or unbounded) on X and $\mathfrak{M}(C(X,K))$ the maximal ideal space of C(X,K). We recall two results proved in [10], [11]: (1) $\mathfrak{M}(C(X,K))$ endowed with Stone topology (hull-kernel) is homeomorphic to the Stone-Čech compactification βX and (2) each $f \in C(X,K)$ can be extended to a continuous function \tilde{f} over βX with values in $[-\infty,\infty]$. The set of all \tilde{f} for $f \in C(X,K)$ is denoted by $\tilde{C}(X,K)$.

Definition 1. Let X be a completely regular space and S a subset of C(X, K). A function $f \in C(X, K)$ is said to be a limit point of S under uniform topology if f can be uniformly approximated by the functions in S on subsets of X on which f is bounded.

Lemma 1. Let X be a completely regular space and C(X, R) the algebra of all real continuous functions on X. If a subalgebra S of C(X, R) contains the identity element and separates $\mathfrak{M}(C(X, R))$, then S is dense in C(X, R) under uniform topology. The same result holds for C(X, R) if S is selfadjoint.

Proof. By the classical Weierstrass theorem ([9], p. 175) there exists a polynomial $P_n(t)$ such that $||t|-P_n(t)|<1/n$ for $t\in[-n,n]$. Then $||f(x)|-P_n(f(x))|<1/n$ if $|f(x)|\leq n$ and $f\in S$ implies $|f|\in \bar{S}$, the closure of S. \bar{S} is therefore a lattice and all $f_m=(f\wedge m)\vee(-m)$ for positive integers m and $f\in \bar{S}$ belongs to \bar{S} . It follows that the bounded functions in \bar{S} separates the compact Hausdorff space $\mathfrak{M}(C(X,R))$ and all bounded real continuous functions on X are elements of \bar{S} as a consequence of the Stone-Weierstrass theorem. Since

^{*)} Presented to the Amer. Math. Soc. (1968) under the title: "Rings of continuous vector-valued functions". The work was supported in part by the faculty research grant of California State College at Long Beach.

every unbounded continuous functions on X is a limit point of $C^*(X, R)$, we have $\bar{S} = C(X, R)$.

Lemma 2. Let T be a compact Hausdorff space and $\tilde{C}(T,R)$ a closed algebra of continuous real functions on T under uniform topology with values in $[-\infty,\infty]$ separating T, and with the property that each $\tilde{f} \in \tilde{C}(X,R)$ is finitely valued on a dense subset X of T. If \tilde{S} is subalgebra of $\tilde{C}(X,R)$ which separates T and contains constant functions, then the closure of \tilde{S} under uniform topology is $\tilde{C}(T,R)$.

The same proof for Lemma 1 can be applied and it is easy to see that T is homeomorphic to $\mathfrak{M}(C(X,R))$.

Lemma 3. Let X be a completely regular space and S a subset of C(X, R). The sets of constancy for \tilde{S} in βX constitute an upper semicontinuous decomposition of βX ([7], p. 126).

Proof. Let E be a closed set in βX . Denote by E' the union of all the sets of constancy which intersect E and let x_0 be a limit point of E'. For any finite set $\pi = \{f_1, \cdots, f_p; g_1, \cdots, g_q; h_1, \cdots, h_r\} \subset S$, define $H_n(\pi) = \{x: |f_i(x) - f_i(x_0)| \le 1/n, g_j(x) \ge n, h_k(x) \le -n, i = 1, \cdots, p, j = 1, \cdots, q, k = 1, \cdots, r\}$ if $g_j(x_0) = \infty$, $h_k(x_0) = -\infty$ and $f_i(x_0)$ are finite. As x_0 is a limit point of E', $E \cap H_n(\pi)$ is nonempty. The compactness of E and the finite intersection property of the set of sets $H_n(\pi)$ imply that all $H_n(\pi)$ have a common point $x_1 \in E$. Then x_0 and x_1 belong to the same set of constancy and $x_0 \in E'$. The upper semicontinuity of the decomposition of βX is proved.

Lemma 4. Let X be a completely regular space and S_0 a selfadjoint subalgebra of C(X, K) which contains constant functions and is contained in a closed subalgebra S of C(X, K) under uniform topology. If $f \in C(X, K)$ and $\tilde{f} \in \tilde{S}$ on every set of constancy for \tilde{S}_0 in $\mathfrak{M}(C(X, K))$, then f belongs to S.

Proof. Assume that S_0 is closed. The set Σ of sets of constancy for \tilde{S}_0 in βX constitute a compact Hausdorff space if any subset Ω of Σ is defined as open when the union of the sets in Ω is open in βX . For each $\xi_0 \in \Sigma$ there is $\tilde{g}_0 \in \tilde{S}$ with $\tilde{f}(x) = \tilde{g}_0(x)$ for $x \in \xi_0$. Let $V = \{x : |\tilde{f}(x) - \tilde{g}_0(x)| < \varepsilon$, $x \in \beta X$, and $g_0(x)$ for $x \in \xi_0$ is finite; $f(x) > \frac{1}{\varepsilon}$ or $f(x) < -\frac{1}{\varepsilon}$ otherwise}. Then V is an open set containing ξ_0 . Since Σ is an upper semicontinuous decomposition of βX by Lemma 3, all the sets of constancy contained in V form an open set W in Σ . Let $\{W_1, \dots, W_n\}$ be an open covering of the compact Hausdorff space Σ and $\tilde{g}_1, \dots, \tilde{g}_n$ the corresponding functions. Denote the union of the sets of constancy contained in V_i by U_i . Then $|\tilde{f}(x) - \tilde{g}_i(x)| < \varepsilon$, for $x \in U_i$ and $|f(x)| \leq \frac{1}{\varepsilon}$. The partition of unity $\{\tilde{e}_1, \dots, \tilde{e}_n\}$ on the

compact space Σ subordinated to the open covering $\{W_1, \cdots, W_n\}$ corresponds to the continuous functions $\tilde{u}_1, \cdots, \tilde{u}_n$ on βX . By Lemma 2, $\tilde{u}_1, \cdots, \tilde{u}_n$ belong to \tilde{S}_0 and thus $\tilde{g} = \tilde{u}_1 \tilde{g}_1 + \cdots + \tilde{u}_n \tilde{g}_n \in \tilde{S}$. Since $|\tilde{f}(x) - \tilde{g}(x)| \leq \sum_{i=1}^n |\tilde{u}_i(x)| |\tilde{f}(x) - \tilde{g}_i(x)| < \varepsilon$ and $|f(x)| \leq \frac{1}{\varepsilon}$, for $x \in \beta X$ then f belongs to S and the proof is complete.

Lemma 4 generalizes the Silov-Stone-Weierstrass theorem ([7], p. 126).

Definition 2. Let A be a complete commutative seminormed *-algebra with a family $\mathfrak B$ of seminorms and with the identity element. A is called regular if, for each closed maximal ideal M_0 of A, there is $x_0 \in M_0$ such that $\bar V = \sup\{V : V(x_0) \le 1, \ V \in \mathfrak B\}$ is a seminorm in $\mathfrak B$.

We have proved in [11] that a regular complete commutative seminormed *-algebra with identity is isometric (seminorm preserving) and *-isomorphic to C(T,K), where T is a locally compact Hausdorff space.

Lemma 5. Let X be a completely regular space and C(X,A) the algebra of all continuous functions defined on X with values in a regular complete commutative seminormed *-algebra A with identity. The space $\mathfrak{M}(C(X,A))$ of all maximal ideals in C(X,A) topologized in the Stone's sense is homeomorphic to the Stone-Čech compactification $\beta\{\mathfrak{M}_1(A)\times X\}$ of the product space $\mathfrak{M}_1(A)\times X$, $\mathfrak{M}_1(A)$ being the space of all closed maximal ideals in A [11].

Proof. A is algebraically *-isomorphic and topologically isometric to the algebra C(T,K), equipped with compact-open topology, of all continuous complex functions on a locally compact Hausdorff space T which is equivalent to $\mathfrak{M}_1(A)$ [11]. There exists an isometric *-isomorphism between C(X,A) and $C(T\times X)$, i.e., between C(X,A) and $C(\mathfrak{M}_1(A)\times X)$. Then $\mathfrak{M}(C(X,A))$ endowed with Stone topology is homeomorphic to $\mathfrak{M}[C(\mathfrak{M}_1(A)\times X,K)]$ or $\beta\{\mathfrak{M}_1(A)\times X\}$ [10].

Lemma 5 is an analogue to a theorem due to Yood and Hausner [5].

Definition 3. Let X be a completely regular space and A a complete regular commutative seminormed *-algebra. To each $f \in C(X,A)$ there corresponds a unique $f_1 \in \tilde{C}[\beta \{ \mathfrak{M}_1(A) \times X \}, K]$. Define $f \vee g$ $(f \wedge g)$ for $f, g \in C(X,A)$ as the element corresponding to $f_1 \vee g_1 (f_1 \wedge g_1)$ for corresponding $f_1, g_1 \in \tilde{C}[\beta \{ \mathfrak{M}_1(A) \times X \}, K]$. Also define a function $f \in C(X,A)$ as a uniform limit of a subalgebra S of C(X,A) if \tilde{f}_1 is a limit of the corresponding subalgebra \tilde{S} of $\tilde{C}[\beta \{ \mathfrak{M}_1(A) \times X \}, K]$ under uniform topology.

Theorem 1. Let X be a completely regular space and A a regular complete commutative seminormed *-algebra with identity. If

 $S_0(X,A)$ is a selfadjoint subalgebra of C(X,A) which contains vectorvalued constant functions and is contained in closed subalgebra S(X,A) of C(X,A), then $f \in C(X,A)$ and $\tilde{f} \in \tilde{S}$ on every set of constancy for $\tilde{S}_0(X,\tilde{A})$ in $\beta\{\mathfrak{M}_1(A)\times X\}$ imply that f belongs to S(X,A). $(\tilde{A} \text{ is the union of } A \text{ and } \{\pm \infty \cdot e\}).$

The theorem is an immediate consequence of Lemma 4, Lemma 5, and Definition 3.

Corollary. If a *-subalgebra S(X, A) of C(X, A) contains vectorvalued constant functions and separates $\mathfrak{M}\{C(X, A)\}$, then S(X, A) is dense in C(X, A) under uniform topology.

Lemma 6. Let X be a completely regular space, E a compact set in X and $E_0 \subset E$ a set dence in E. Let $\tilde{C}(E_0,R)$ be the algebra of all real continuous functions on E with values in $[-\infty,\infty]$ and assuming finite values on E_0 . If $\tilde{G}_0(E_0,R)$ is any subset of $\tilde{C}(E_0,R)$ and $\mathfrak{C}(\tilde{G}_0)$ the family of all functions generated from \tilde{G}_0 by the lattice operations and completed under uniform topology, then a necessary and sufficient condition for a function $\tilde{f} \in \tilde{C}(E_0,R)$ to be in $\mathfrak{C}(\tilde{G}_0)$ is that, for any positive integer n, any $\varepsilon > 0$ and any two points $x, y \in E_n = \{x : |f(x)| \le n, x \in E\}$, there exist a function $f_{xy} \in \mathfrak{C}(\tilde{G}_0)$ such that $|f(x) - f_{xy}(x)| < \varepsilon$, $|f(y) - f_{xy}(y)| < \varepsilon$.

The lemma is an analogue of a theorem due to Stone ([9], p. 170) and can be derived by applying Stone's theorem for the functions on compact sets E_n for positive integers n. The following is consequence of Lemma 6 by identifying X and E as the same compact Hausdorff space $\mathfrak{M}(C(E_0, R))$.

Lemma 7. If X is a completely regular space, S(X,R) a closed linear sublattice of C(X,R) under uniform topology containing constant functions and if there exists for any two distinct points $M_1, M_2 \in \mathfrak{M}(C(X,R))$ a continuous functions $f \in C(X,R)$ such that $\tilde{f}(M_1) \neq \tilde{f}(M_2)$, then S(X,R) = C(X,R) (see [6], Theorem 4).

Theorem 2. Let X, A be as before and let E_0 be any subset of X. Every function belonging to $C(X_0, A)$ has a continuous extension over βX if and only if C(X, A) separates $\mathfrak{M}(C(X_0, A))$.

Proof. It suffices to show that every function $\in C(\mathfrak{M}_1(A) \times E_0, K)$ has a continuous extension over $\beta\{\mathfrak{M}_1(A) \times X\}$ if $\tilde{C}(\mathfrak{M}_1(A) \times X, K)$ separates $\mathfrak{M}[C(\mathfrak{M}_1(A) \times E_0, K)]$. $\mathfrak{M}[C(\mathfrak{M}_1(A) \times E_0, K)]$ is a compact subset of $\beta\{\mathfrak{M}_1(A) \times X\}$ and E_0 is dense in $\mathfrak{M}[C(\mathfrak{M}_1(A) \times E_0, K)]$. Following Stone's idea ([9], p. 242) and using Lemma 7, we see that the set of functions generated from the restrictions of $\tilde{C}[\beta\{\mathfrak{M}_1(A) \times X\}, K]$ on $\mathfrak{M}[\tilde{C}(\mathfrak{M}_1(A) \times E_0, K)]$ by the lattice operations and completed under uniform topology is, in fact, $\tilde{C}(\mathfrak{M}_1(A) \times E_0, K)$.

References

- [1] Banaschewski, B.: On the Weierstrass-Stone approximation theorem. Fund. Math., 44, 249-252 (1957).
- [2] Gillman, L., and Jerison, M.: Rings of Continuous Functions. Van Nostrand, New York (1960).
- [3] Isbell, J. R.: Algebras of uniformly continuous functions. Ann. Math., 68, 96-125 (1958).
- [4] Hewitt, E.: Certain generalizations of the Weierstrass approximation theorem. Duke Math. J., 14, 419-427 (1947).
- [5] Hausner, A.: Ideals in a certain Banach algebra. Proc. Amer. Math. Soc., 8, 246-249 (1957).
- [6] Katutani, S.: Concrete representation of abstract (M)-spaces. Ann. Math. 42, 994-1024 (1941).
- [7] Rickart, C. E.: General Theory of Banach Algebras. Van Nostrand, New York (1960).
- [8] Stephenson, R. M. Jr.: Spaces for which the Stone-Weierstrass theorem holds. Trans. AMS, 133, 537-546 (1968).
- [9] Stone, M. H.: The generalized Weierstrass approximation theorem. Math. Mag., 21, 167-184, 237-254 (1948).
- [10] Wenjen, C.: Rings of generalized continuous functions. Hung-Ching Chow sixty-fifth anniversary volume, Taiwan, China, 31-40 (1967).
- [11] —: A remark on a problem of M. A. Naimark. Proc. Japan Acad., 44, 651-655 (1968).