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211. Generalizations of the Stone.Weierstrass
Approximation Theorem*

By Chien WENJEN
California State College at Long Beach, U.S.A.

(Comm. by Kinjir KUNU(I, M.J.A., Nov. 12, 1968)

The celebrated Stone-Weierstrass theorem for the continuous
functions on compact Hausdorff spaces has been extended to those on
more general spaces [1], [3], [4], [8]. The purpose of the present note
is to present some generalizations of the theorem and the Stone-Tietze
extension theorem to the vector-valued continuous functions on com-
pletely regular spaces.

Let X be a completely regular space, C(X, K) the algebra of all
complex continuous unctions (bounded or unbounded) on X and
(C(X, K)) the maximal ideal space of C(X, K). We recall two re-
sults proved in [10], [11]" (1) Y2(C(X, K)) endowed with Stone topolo-
gy (hull-kernel) is homeomorphic to the Stone-Cech compactification

X and (2) each f C(X, R) can be extended to a continuous unc-
tion f over fiX with values in [-c, ]. The set o2 all f or
f e C(X, K) is denoted by C(X, K).

Definition 1o Let X be a completely regular space and S a sub-
set o C(X, K). A unction f e C(X, K) is said to be a limit point o
S under uniform topology if f can be uniformly approximated by the
unctions in S on subsets of X on which f is bounded.

Lemma 1 Let X be a completely regular space and C(X, R) the
algebra of all real continuous functions on X. If a subalgebra S of
C(X, R) contains the identity element and separates (C(X, R)), then
S is dense in C(X, R) under uniform topology. The same result holds

for C(X, R) if S is selfad]oint.
Proof. By the classical Weierstrass theorem ([9], p. 175) there

exists a polynomial P(t) such that II t --Pn(t) 1In for t e [--n, n].
Then II f(x) --P(f(x)) < 1In i f(x) <--n and f e S implies fl e S,
the closure o S. S is therefore a lattice and all f=(f/m)V(--m)
for positive integers m and f e ; belongs to :. It ollows that the
bounded unctions in S separates the compact Hausdorff space
(C(X, R))and all bounded real continuous unctions on X are ele-
ments o as a consequence o the Stone-Weierstrass theorem. Since
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every unbounded continuous functions on X is a limit point of
C*(X, R), we have -C(X, R).

Lemma 2. Let T be a compact Hausdorff space and C(T, R) a
closed algebra of continuous real functions on T under uniform topolo-
gy with values in [--c, c] separating T, and with the property that
each f e C(X, R) is finitely valued on a dense subset X of T. If S is
subalgebra of C(X, R) which separates T and contains constant func-
tions, then the closure of S under uniform topology is C(T, R).

The same proof for Lemma 1 can be applied and it is easy to see
that T is homeomorphic to (C(X, R)).

Lemma :. Let X be a completely regular space and S a subset
of C(X, R). The sets of constancy for S in X constitute an upper
semicontinuous decomposition of fiX ([7], p. 126).

Proof. Let E be a closed set in fiX. Denote by E’ the union of
all the sets of constancy which intersect E and let x0 be a limit point
of E’. For any finite set -{fl,’",f;g,’",g;h,’",h}S,
define Hn()-{x" If(x)-f(Xo)l<_l/n, g(x)>_n, h(x)<_-n, i=1,
.., p, ]- 1, ..., q, k= 1, ..., r} if g(Xo)- c, h(xo)- c and f(Xo)

are finite. As x0 is a limit point of E’, E Hn(7) is nonempty. The
compactness of E and the finite intersection property of the set of
sets H() imply that all Hn() have a common point x e E. Then x0
and x belong to the same set of constancy and x0 e E’. The upper
semicontinuity of the decomposition of fiX is proved.

Lemma 4. Let X be a completely regular space and So a selfad-
joint subalgebra of C(X, K) which contains constant functions and is
contained in a closed subalgebra S of C(X, K) under uniform topology.

If f eC(X,K) and f e on every set of constancy for o in
(C(X, K)), then f belongs to S.

Proof. Assume that So is closed. The set F, of sets of constancy
for So in fiX constitute a compact Hausdorff space if any subset t9 of

is defined as open when the union of the sets in/2 is open in fiX.
For each $0eF, there is 0e with f(x)-0(x) for xe0. Let
V {x" I](x)- 0(x) < e, x e fiX, and go(X) for x e $0 is finite f(x) > 1__

or f(x)- 1__ otherwise}. Then V is an open set containing $0. Since

F, is an upper semicontinuous decomposition of fiX by Lemma 3, all
the sets of constancy contained in V form an open set W in .. Let
{W1,..., Wn} be an open covering of the compact Hausdorff space F,
and , ..., n the corresponding functions. Denote the union of the
sets of constancy contained in V by U. Then f(x)-(x)ls, for

x e U and f(x)l <_1__. The partition of unity {,..., n} on the
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compact space F, subordinated to the open covering {W, ..., W} cor-
responds to the continuous functions ,..., on fiX. By Lemma
2, ,...,/ belong to So and thus 0-0/.../0 e S. Since

]](x)- (x)] (x) f(x)- (x) < and f(x), for x e X
then f belongs to S and the proof is complete.

Lemma 4 generalizes the Silov-Stone-Weierstrass theorem ([7], p.
126).

Definition 2. Let A be a complete commututive seminormed
.-algebra with a family of seminorms and with the identity element.
A is called regular if, for each closed maximal ideal M0 of A, there is

x0 e M0 such that =sup (V" V(xo) 1, V e } is a seminorm in .
We have proved in [11] that a regular complete commutative

seminormed .-algebra with identity is isometric (seminorm preserv-
ing) and ,-isomorphic to C(T, K), where T is a locally compact Haus-
dorf space.

Lemma 5. Let X be a completely regular space and C(X, A) the
algebra of all continuous functions defined on X with values in a reg-
ular complete commutative seminormed ,-algebra A with identity.
The space (C(X, A)) of all maximal ideals in C(X, A) topologized in
the Stone’s sense is homeomorphic to the Stone-Cech compactification
{(A) X} of the product space (A) X, (A) being the space of
all closed maximal ideals in A [11].

Proof. A is algebraically .-isomorphic and topologically isomet-
ric to the algebra C(T, K), equipped with compact-open topology, of
all continuous complex functions on a locally compact Hausdorff space
T which is equivalent to (A) [11]. There exists an isometric .-iso-
morphism between C(X, A) and C(TX), i.e., between C(X, A) and
C((A)X). Then (C(X, A)) endowed with Stone topology is
homeomorphic to [C((A) X, K)] or fl {(A) X} [10].

Lemma 5 is an analogue to a theorem due to Yood and Hausner
[5].

Definition . Let X. be a .completely regular space and A a com-
plete regular commutative seminormed .-algebra. To each f e C(X, A)
there corresponds a unique f e C[fl {(A) X}, K]. Define fg
(fA g) for f, g e C(X, A) as the element corresponding to f g (fA g)
or corresponding f, g e C[fl{(A)X}, K]. Also define a unction

f e C(X, A) as a uniform limit of a subalgebra S of C(X, A) if ] is a
limit of the corresponding subalgebra S of C[fl{(A) X}, K] under
uniform topology.

Theorem 1. Let X be a completely regular space and A a regu-
lar complete commutative seminormed .-algebra with identity. If
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S0(X, A) is a selfad]oint subalgebra of C(X, A) which contains vector-
valued constant functions and is contained in closed subalgebra
S(X, A) of C(X, A), then f e C(X, A) and f e on every set of con-
stancy for So(X, A) in fl {I(A) X} imply that f belongs to S(X, A).
(A is the union of A and {___ c. e}).

The theorem is an immediate consequence of Lemma 4, Lemma 5,
and Definition 3.

Corollary. If a .-subalgebra S(X, A) of C(X, A) contains vector-
valued constant functions and separates 7A{C(X, A)}, then S(X, A) is
dense in C(X, A) under uniform topology.

Lemma 5. Let X be a completely regular space, E a compact set
in X and EocE a set dence in E. Let C(Eo, R) be the algebra of all
real continuous functions on E with values in [-c, ] and assuming

finite values on Eo. If o(Eo, R) is any subset of (Eo, R) and (o)
the family of all functions generated from Go by the lattice operations
and completed under uniform topology, then a necessary and sufficient
condition for a function ] e (Eo, R) to be in (o) is that, for any
positive integer n, any e0 and any two points x, y e E-{x" f(x)
<_n, x e E}, there exist a function f e (Go) such that f(x)-f(x)]
< e, ]f(y)--fx(y)l < e.

The lemma is an analogue of a theorem due to Stone ([9], p. 170)
and can be derived by applying Stone’s theorem for the functions on
compact sets E for positive integers n. The following is consequence
of Lemma 6 by identifying X and E as the same compact Hausdorff
space F(C(Eo, R)).

Lemma 7. If X is a completely regular space, S(X, R)a closed
linear sublattice of C(X, R) under uniform topology containing con-
stant functions and if there exists for any two distinct points
M1, M e 7A(C(X, R)) a continuous functions f e C(X, R) such that
](M) f(M), then S(X, R) C(X, R) (see [6], Theorem 4).

Theorem 2. Let X, A be as before and let Eo be any subset of
X. Every function belonging to C(Xo, A) has a continuous extension
over fix if and only if C(X, A) separates 7A(C(Xo, A)).

Proof. It suffices to show that every unction e C((A)Eo, K)
has a continuous extension over fl {(A) X} if C(TA(A) X, K) sepa-
rates ![[C((A) E0, K)]. [C((A) E0, K)] is a compact subset
of fl {(A) X} and E0 is dense in [C(!g(A) E0, K)]. Following
Stone’s idea ([9], p. 242) and using Lemma 7, we see that the set of
unctions generated from the restrictions of C[fl{(A)X}, K] on
[C(TA(A)Eo, K)] by the lattice operations and completed under
uniform topology is, in fact, C((A) Eo, K).
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