206. Generalized Product and Sum Theorems for Whitehead Torsion

By Hiroshi Hosokawa
(Comm. by Kinjirô Kunugi, m. J. A., Nov. 12, 1968)

1. Introduction. Let K and L be finite $C W$-complexes and let $f: K \rightarrow L$ be a cellular map. If f is a homotopy equivalence, the Whitehead torsion $\tau(f) \in \mathrm{Wh}(\pi)$ is defined, where $\mathrm{Wh}(\pi)$ is the Whitehead group of the fundamental group π of L (for the definitions, see Milnor [2]).

Whitehead has proved in [4] that K and L are of the same simple homotopy type iff there is a homotopy equivalence $f: K \rightarrow L$ such that $\tau(f)=0$.

In 1965, Kwun and Szczarba proved two theorems for Whitehead torsion [1]; one is the Sum Theorem, and the other the Product Theorem. The Sum Theorem is stated as follows.

Theorem I. Let X and Y be finite cell complexes which are the union of subcomplexes $X=X_{1} \cup X_{2}, Y=Y_{1} \cup Y_{2}$, and X_{0}, Y_{0} the intersection $X_{0}=X_{1} \cap X_{2}, Y_{0}=Y_{1} \cap Y_{2}$. Let $f: X \rightarrow Y$ be a cellular map and $f \mid X_{i}=f_{i}: X_{i} \rightarrow Y_{i}(i=0,1,2)$. If f_{i} are homotopy equivalences and X_{0} is connected and simply connected, then f is a homotopy equivalence and

$$
\begin{equation*}
\tau(f)=j_{1} \tau \tau\left(f_{1}\right)+j_{2^{*}} \tau\left(f_{2}\right), \tag{1}
\end{equation*}
$$

where $j_{i^{*}}: \mathrm{Wh}\left(\pi_{1}\left(Y_{i}\right)\right) \rightarrow \mathrm{Wh}\left(\pi_{1}(Y)\right)$ are induced by the inclusion maps.
In this paper we shall consider the case when X_{0} is non-simply connected. Then we obtain the following result which is a generalization of Theorem I.

Theorem I^{\prime}. Let X, Y be finite $C W$-complexes which are the union of subcomplexes $X=X_{1} \cup X_{2}, Y=Y_{1} \cup Y_{2}$. Put $X_{0}=X_{1} \cap X_{2}, Y_{0}$ $=Y_{1} \cap Y_{2}$. Let $f: X \rightarrow Y$ be a cellular map and $f_{i}=f \mid X_{i}: X_{i} \rightarrow Y_{i}$ be homotopy equivalences $(i=0,1,2)$. If X_{0} is connected, then f is a homotopy equivalence and

$$
\begin{equation*}
\tau(f)=j_{1^{*}} \tau\left(f_{1}\right)+j_{2^{*}} \tau\left(f_{2}\right)-j_{0^{*}} \tau\left(f_{0}\right), \tag{2}
\end{equation*}
$$

where $j_{i}: Y_{i} \rightarrow Y$ are inclusions.
In particular, if X_{0} is simply connected, then $\tau\left(f_{0}\right)=0$ and hence we get formula (1) from formula (2).

Next, the Product Theorem in [1] reads as follows.
Theorem II. If C is an acyclic based A-complex and C^{\prime} a based B-complex, then $\tau\left(C \otimes_{z} C^{\prime}\right)=\chi\left(C^{\prime}\right) i_{*} \tau(C)$, where $\chi\left(C^{\prime}\right)$ is the Euler
characteristic of C^{\prime} and $i_{*}: \bar{K}_{1}(A) \rightarrow \bar{K}_{1}\left(A \otimes_{2} B\right)$ is induced by the map $a \rightarrow a \otimes 1$.
J. Milnor defined in [2] the torsion for non-acyclic based complexes. We attempt to calculate the torsion $\tau\left(C \otimes_{2} C^{\prime}\right)$ when C, C^{\prime} are not necessarily acyclic. We say here that a finite complex C is a based A complex if $C_{q}, H_{q}(C)$ are free A-modules with prefered bases and $B_{q}(C)=\partial C_{q+1}$ is also free.

Theorem II'. If C is a based A-complex and C^{\prime} a based B-complex, then $C \otimes_{z} C^{\prime}$ is a based $A \otimes_{z} B$-complex and

$$
\tau\left(C \otimes_{z} C^{\prime}\right)=\chi(C) j_{*} \tau\left(C^{\prime}\right)+\chi\left(C^{\prime}\right) i_{*} \tau(\mathrm{C})
$$

where the map $j: B \rightarrow A \otimes_{z} B$ is defined by $j(b)=1 \otimes b$, and i as above.
2. Proof of Theorem I'. In this paper, we use the results of Milnor's paper [2] and his notations. Spaces are connected finite $C W$ complexes and maps are cellular maps. We shall first prove the following theorem.

Theorem 1. Let $f: X \rightarrow Y$ be a homotopy equivalence and let X^{\prime} $=X \cup_{g} D^{2}, Y^{\prime}=Y \cup_{f g} D^{2}$, where $g: \dot{D}^{2} \rightarrow X$. Define $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ by $f^{\prime} \mid X$ $=f, f^{\prime} \mid$ int $D^{2}=$ identity. Then f^{\prime} is a homotopy equivalence and $\tau\left(f^{\prime}\right)$ $=h_{*} \tau(f)$, where $h: Y \rightarrow Y^{\prime}$ is the inclusion.

Proof. It is obvious that f^{\prime} is a homotopy equivalence. Let $j: Z\left[\pi_{1}(X)\right] \rightarrow Z\left[\pi_{1}\left(X^{\prime}\right)\right]$ be the ring homomorphism induced by the inclusion map and let $p: \tilde{M}_{f} \rightarrow M_{f}, p^{\prime}: \tilde{M}_{f^{\prime}} \rightarrow M_{f^{\prime}}$ be the universal coverings of the mapping cylinders of f, f^{\prime}. Put $p^{-1}(X)=\tilde{X}, p^{\prime-1}\left(X^{\prime}\right)=\tilde{X}^{\prime}$. There is a natural map $p^{\prime \prime}: \tilde{M}_{f} \rightarrow p^{\prime-1}\left(M_{f}\right)$ such that $p^{\prime} p^{\prime \prime}=p . \quad p^{\prime \prime}$ induces a simple isomorphism

$$
Z\left[\pi_{1}\left(X^{\prime}\right)\right] \otimes_{j} C\left(\tilde{M}_{f}, \tilde{X}\right) \cong C\left(p^{\prime-1}\left(M_{f} \cup X^{\prime}\right), \tilde{X}^{\prime}\right)
$$

Since each component of $\tilde{M}_{f^{\prime}}-p^{\prime-1}\left(M_{f} \cup X^{\prime}\right)$ is simply connected, we have

$$
\begin{aligned}
\tau\left(C\left(\tilde{M}_{f^{\prime}}, \tilde{X}^{\prime}\right)\right) & =\tau\left(C\left(\tilde{M}_{f^{\prime}}, p^{\prime-1}\left(M_{f} \cup X^{\prime}\right)\right)\right)+\tau\left(C\left(p^{\prime-1}\left(M_{f} \cup X^{\prime}\right), \tilde{X}^{\prime}\right)\right) \\
& =\tau\left(C\left(p^{\prime-1}\left(M_{f} \cup X^{\prime}\right), \tilde{X}^{\prime}\right)\right) \\
& =j_{*} \tau\left(C\left(\tilde{M}_{f}, \tilde{X}\right)\right) .
\end{aligned}
$$

Therefore $\tau\left(f^{\prime}\right)=f_{*}^{\prime} \tau\left(C\left(\tilde{M}_{f^{\prime}}, \tilde{X}^{\prime}\right)\right)=f_{*}^{\prime} j_{*} \tau\left(C\left(\tilde{M}_{f}, \tilde{X}\right)\right)=h_{*} \tau(f)$.
Corollary. Let $f: X \rightarrow Y$ be a homotopy equivalence and let g_{i} be maps $g_{i}: \dot{D}_{i}^{2} \rightarrow X$. Define

$$
f^{\prime}: X \cup_{g_{1}} D_{1}^{2} \cup \cdots \cup_{g_{r}} D_{r}^{2} \rightarrow Y \cup_{f g_{1}} D_{1}^{2} \cup \cdots \cup_{f g_{r}} D_{r}^{2}
$$

by $f^{\prime}\left|X=f, f^{\prime}\right|$ int $D_{i}^{2}=$ identity. Then f^{\prime} is a homotopy equivalence and $\tau\left(f^{\prime}\right)=h_{*} \tau(f)$, where h is the inclusion.

Proof. This is proved by induction on r.
Theorem 2. If the inclusion map $X_{0} \rightarrow X$ induces a monomorphism $\pi_{1}\left(X_{0}\right) \rightarrow \pi_{1}(X)$, then Theorem I^{\prime} holds.

Lemma 1. Under the same condition as Theorem 2,

$$
\begin{equation*}
\pi_{1}\left(X_{0}\right) \rightarrow \pi_{1}\left(X_{i}\right) \quad(i=1,2), \tag{1}
\end{equation*}
$$

(2)

$$
\pi_{1}\left(X_{i}\right) \rightarrow \pi_{1}(X) \quad(i=1,2)
$$ are monomorphisms.

Proof. (1) is trivial. $\pi_{1}(X)$ is an amalgamated product of the family $\left\{\pi_{1}\left(X_{i}\right), \pi_{1}\left(X_{0}\right) \rightarrow \pi_{1}\left(X_{i}\right)\right\}$, hence $\pi_{1}\left(X_{i}\right) \rightarrow \pi_{1}(X)$ are monomorphisms (A. G. Kurosch, Theory of groups, § 35, Chelsea, 1960).

Let L be a subcomplex of a complex K and $p: \tilde{K} \rightarrow \mathrm{~K}$ be a universal covering of K. Let \tilde{L} be one of the components of $p^{-1}(L)$.

Lemma 2. If $\pi_{1}(L) \rightarrow \pi_{1}(K)$ is a monomorphism, then $p^{\prime}=p \mid \tilde{L}: \tilde{L}$ $\rightarrow L$ is a universal covering of L.

Proof. It is sufficient to show that \tilde{L} is simply connected. But this is an immediate consequence of the covering homotopy property.

Proof of Theorem 2. The homotopy equivalence is easily proved.
Let $p: \tilde{M}_{f} \rightarrow M_{f}$ be the universal covering of the mapping cylinder of f. Since the exact sequence

$$
\begin{aligned}
0 \rightarrow C\left(p^{-1}\left(M_{f_{0}}\right), p^{-1}\left(X_{0}\right)\right) & \xrightarrow{\varphi} C\left(p^{-1}\left(M_{f_{1}}\right), p^{-1}\left(X_{1}\right)\right) \oplus C\left(p^{-1}\left(M_{f_{2}}\right), p^{-1}\left(X_{2}\right)\right) \\
& \xrightarrow{\psi} C\left(\tilde{M}_{f}, p^{-1}(X)\right) \rightarrow 0,
\end{aligned}
$$

where $\varphi(\mathrm{c})=(c, c), \psi\left(c_{1}, c_{2}\right)=c_{1}-c_{2}$, is compatible for the prefered bases, we have

$$
\begin{aligned}
& \tau\left(C\left(p^{-1}\left(M_{f_{1}}\right), p^{-1}\left(X_{1}\right)\right)\right)+\tau\left(C\left(p^{-1}\left(M_{f_{2}}\right), p^{-1}\left(X_{2}\right)\right)\right) \\
= & \tau\left(C\left(p^{-1}\left(M_{f_{0}}\right), p^{-1}\left(X_{0}\right)\right)\right)+\tau\left(C\left(\tilde{M}_{f}, p^{-1}(X)\right)\right) .
\end{aligned}
$$

We have to prove $f_{*} \tau\left(C\left(p^{-1}\left(M_{f_{i}}\right), p^{-1}\left(X_{i}\right)\right)\right)=j_{i *} \tau\left(f_{i}\right)$ for $i=0,1,2$.
Let $\tilde{M}_{f_{i}}$ be one of the components of $p^{-1}\left(M_{f_{i}}\right)$. Since $\pi_{1}\left(M_{f_{i}}\right)$ $\rightarrow \pi_{1}\left(M_{f}\right)$ is a monomorphism, $p_{i}=p \mid \tilde{M}_{f_{i}}: \tilde{M}_{f_{i} \rightarrow M_{f_{i}}}$ is a universal covering. Let $h_{i}: Z\left[\pi_{1}\left(X_{i}\right)\right] \rightarrow Z\left[\pi_{1}(X)\right]$ be a homomorphism induced by the inclusion. Then

$$
C\left(p^{-1}\left(M_{f_{i}}\right), p^{-1}\left(X_{i}\right)\right) \cong Z\left[\pi_{1}(X)\right] \otimes_{h_{i}} C\left(\tilde{M}_{f_{i}}, p_{i}^{-1}\left(X_{i}\right)\right)
$$

is simple isomorphic. Since $f_{*} h_{i^{*}}=j_{i^{*}} f_{i^{*}}$,

$$
\begin{aligned}
f_{*} \tau\left(C\left(p^{-1}\left(M_{f_{i}}\right), p^{-1}\left(X_{i}\right)\right)\right) & =f_{*} h_{i *} \tau\left(C\left(\tilde{M}_{f_{i}}, p_{i}^{-1}\left(X_{i}\right)\right)\right. \\
& =j_{i^{*}} f_{i} \tau\left(C\left(\tilde{M}_{f_{i}}, p_{i}^{-1}\left(X_{i}\right)\right)\right)=j_{i *}\left(f_{i}\right) .
\end{aligned}
$$

This completes the proof.
Proof of Theorem I'. Let $g_{i}: \dot{D}_{i}^{2} \rightarrow X_{0}, i=1, \cdots, r$ be representations for generators of $\operatorname{Ker}\left(\pi_{1}\left(X_{0}\right) \rightarrow \pi_{1}(X)\right)$ and let $k_{i}: X_{0} \rightarrow X_{i}$ be inclusions. Put $X_{i}^{\prime}, Y_{i}^{\prime}(i=0,1,2)$ as $X_{i}^{\prime}=X_{i} \cup_{k_{i} g_{1}} D_{1}^{2} \cup \cdots \cup_{k_{i} g_{r}} D_{r}^{2}, \quad Y_{i}^{\prime}$ $=Y_{i} \cup_{f_{i} k_{i} g_{1}} D_{1}^{2} \cup \cdots \cup_{f_{i} k_{i} g_{r}} D_{r}^{2} \quad$ and $\quad X^{\prime}=X_{1}^{\prime} \cup X_{2}^{\prime}, \quad Y^{\prime}=Y_{1}^{\prime} \cup Y_{2}^{\prime}$. Define $f_{i}^{\prime}: X_{i}^{\prime} \rightarrow Y_{i}^{\prime}, f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ as similarly defined in the corollary of Theorem 1. Clearly $X^{\prime}, Y^{\prime}, X_{i}^{\prime}, Y_{i}^{\prime}, f^{\prime}, f_{i}^{\prime}$ satisfy the conditions of Theorem 2. Hence

$$
\tau\left(f^{\prime}\right)=j_{1 *}^{\prime} \tau\left(f_{1}^{\prime}\right)+j_{2}^{\prime} \tau \tau\left(f_{2}^{\prime}\right)-j_{0 *}^{\prime} \tau\left(f_{0}^{\prime}\right),
$$

where $j_{i}^{\prime}: Y_{i}^{\prime} \rightarrow Y^{\prime}$ are inclusions. Let $h: Y \rightarrow Y^{\prime}$ be the inclusion. By Corollary to Theorem 1, $\tau\left(f^{\prime}\right)=h_{*} \tau(f), j_{i *}^{\prime} \tau\left(f_{i}^{\prime}\right)=h_{*} j_{i *} \tau\left(f_{i}\right)(i=0,1,2)$. Therefore

$$
h_{*} \tau(f)=h_{*}\left(j_{1} \tau\left(f_{1}\right)+j_{2^{*}} \tau\left(f_{2}\right)-j_{0 *} \tau\left(f_{0}\right)\right)
$$

Since $f k g_{i} \simeq 0$, where $k: X_{0} \rightarrow X$ is the inclusion, $\pi_{1}(Y) \rightarrow \pi_{1}\left(Y^{\prime}\right)$ is an isomorphism and so is $h_{*}: \mathrm{Wh}\left(\pi_{1}(Y)\right) \rightarrow \mathrm{Wh}\left(\pi_{1}\left(Y^{\prime}\right)\right)$. Hence the Theorem I' holds.
3. Proof of Theorem II'. If $^{\prime}$. is a free A-module and Y a free B-module with bases $x=\left(x^{1}, \cdots, x^{r}\right)$ and $y=\left(y^{1}, \cdots, y^{s}\right)$ respectively, then $X \otimes_{z} Y$ is a free $A \otimes_{z} B$-module with base $x \otimes y=\left(x^{1} \otimes y^{1}, x^{1} \otimes y^{2}, \cdots\right.$ $\cdots, x^{r} \otimes y^{s}$), and if $A=B$, direct sum $X \oplus Y$ is a free A-module with base $x y=\left(x^{1}, \cdots, y^{s}\right)$.

Lemma 3. Let $u, u^{\prime}, u_{1} u_{2}$ be three bases for free A-module X and $v, v^{\prime}, v_{1} v_{2}$ be those for free B-module Y. Then

$$
\begin{equation*}
\left[u \otimes v / u \otimes v^{\prime}\right]=\alpha(X) j_{*}\left[v / v^{\prime}\right], \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\left[u \otimes v / u^{\prime} \otimes v\right]=\alpha(Y) i_{*}\left[u / u^{\prime}\right] \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left[\left(u \otimes v_{1}\right)\left(u \otimes v_{2}\right) / u \otimes\left(v_{1} v_{2}\right)\right]=0 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\left[\left(u_{1} \otimes v\right)\left(u_{2} \otimes v\right) /\left(u_{1} u_{2}\right) \otimes v\right]=0 \tag{4}
\end{equation*}
$$

where i_{*}, j_{*} are the same as in Introduction and $\alpha(G)=($ the minimum of the number of generators of G).

Proof. If $u=\left(u^{1}, \cdots, u^{r}\right), v=\left(v^{1}, \cdots, v^{s}\right), v^{\prime}=\left(v^{\prime}, \cdots, v^{\prime s}\right)$ and $v^{k}=\sum_{j} x_{k, j} v^{\prime j}, x_{k, j} \in B$, then $u^{p} \otimes v^{q}=\sum_{j}\left(1 \otimes x_{q, j}\right) u^{p} \otimes v^{\prime j}$. Let T be a $s \times s$ matrix such that $(T)_{i, j}=1 \otimes x_{i, j}$. Then

$$
u \otimes v / u \otimes v^{\prime}=\left(\begin{array}{llll}
T & T & & \\
& & & 0 \\
0 & & \cdot & \\
& & T
\end{array}\right)
$$

hence $\left[u \otimes v / u \otimes v^{\prime}\right]=r[T]=\alpha(X) j_{*}\left[v / v^{\prime}\right]$.
(2) is proved similarly and (3), (4) are permutations of bases.

Proof of Theorem II'. Let c_{q}, h_{q} be the prefered bases of C_{q}, $H_{q}(C)$ and $c_{q}^{\prime}, h_{q}^{\prime}$ be those of C^{\prime}. By the Künneth formula, $C \otimes_{z} C^{\prime}$ is a based $A \otimes_{z} B$-complex with prefered bases $\left(c_{0} \otimes c_{q}^{\prime}\right)\left(c_{1} \otimes c_{q-1}^{\prime}\right) \cdots\left(c_{q} \otimes c_{0}^{\prime}\right)$, $\left(h_{0} \otimes h_{q}^{\prime}\right)\left(h_{1} \otimes h_{q-1}^{\prime}\right) \cdots\left(h_{q} \otimes h_{0}^{\prime}\right)$. Let C^{\prime} be the form

$$
C_{p}^{\prime} \rightarrow C_{p-1}^{\prime} \rightarrow \cdots \rightarrow C_{q}^{\prime} \rightarrow 0
$$

We proceed by induction on $p-q$.
If $p-q=0$, then $\left(C \otimes C^{\prime}\right)_{i}=C_{i-q} \otimes C_{q}^{\prime}, H_{i}\left(C \otimes C^{\prime}\right)=H_{i-q}(C) \otimes H_{q}\left(C^{\prime}\right)$, having the bases $c_{i-q} \otimes c_{q}^{\prime}, h_{i-q} \otimes h_{q}^{\prime}$. Choose a base b_{r} of $B_{r}=\partial C_{r+1}$ for each r. We can choose a base $b_{i-q} \otimes c_{q}^{\prime}$ of $B_{i}\left(C \otimes C^{\prime}\right)$ for each r. By Lemma 3,

$$
\begin{aligned}
& {\left[\left(b_{r} \otimes c_{q}^{\prime}\right)\left(h_{r} \otimes h_{q}^{\prime}\right)\left(b_{r-1} \otimes c_{q}^{\prime}\right) / c_{r} \otimes c_{q}^{\prime}\right] } \\
= & {\left[\left(b_{r} \otimes c_{q}^{\prime}\right)\left(h_{r} \otimes c_{q}^{\prime}\right)\left(b_{r-1} \otimes c_{q}^{\prime}\right) / c_{r} \otimes c_{q}^{\prime}\right]+\left[h_{r} \otimes h_{q}^{\prime} / h_{r} \otimes c_{q}^{\prime}\right] } \\
= & \alpha\left(C_{q}^{\prime}\right) i_{*}\left[b_{r} h_{r} b_{r-1} / c_{r}\right]+\alpha\left(H_{r}(C)\right) j_{*}\left[h_{q}^{\prime} / c_{q}^{\prime}\right] .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\tau\left(C \otimes C^{\prime}\right) & =\sum_{r}(-1)^{q+r}\left\{\alpha\left(C_{q}^{\prime}\right) i_{*}\left[b_{r} h_{r} b_{r-1} / c_{r}\right]+\alpha\left(H_{r}(C)\right) j_{*}\left[h_{q}^{\prime} / c_{q}^{\prime}\right]\right\} \\
& =(-1)^{q} \alpha\left(C_{q}^{\prime} i_{*} \sum_{r}(-1)^{r}\left[b_{r} h_{r} b_{r-1} / c_{r}\right]\right. \\
& +\left\{\sum_{r}(-1)^{r} \alpha\left(H_{r}(C)\right)\right\} j_{*}(-1)^{q}\left[h_{q}^{\prime} / c_{q}^{\prime}\right] \\
& =\chi(C) j_{*} \tau\left(C^{\prime}\right)+\chi\left(C^{\prime}\right) i_{*} \tau(C) .
\end{aligned}
$$

When $p-q \geqq 1$, let D, D^{\prime} be the chain complexes $C_{q}^{\prime} \rightarrow 0$ and C_{p}^{\prime} $\rightarrow C_{p-1}^{\prime} \rightarrow \cdots \rightarrow C_{q+1}^{\prime} \rightarrow 0$. Then $H_{q}(D) \cong C_{q}^{\prime}, H_{q+1}\left(D^{\prime}\right) \cong C_{q+1}^{\prime} / B_{q+1}^{\prime}$ are free. (B_{r-1}^{\prime} is free and $0 \rightarrow Z_{r}^{\prime} / B_{r}^{\prime} \rightarrow C_{r}^{\prime} / B_{r}^{\prime} \rightarrow C_{r}^{\prime} / Z_{r}^{\prime} \cong B_{r-1}^{\prime} \rightarrow 0$ splits, hence $C_{r}^{\prime} / B_{r}^{\prime}$ $\cong H_{r}^{\prime} \oplus B_{r-1}^{\prime}$.) Let x, y be their bases. Since the other bases are induced from those of C^{\prime}, we can regard D, D^{\prime} as the based B-complexes. The exact sequence

$$
0 \rightarrow C \otimes D \rightarrow C \otimes C^{\prime} \rightarrow C \otimes D^{\prime} \rightarrow 0
$$

is compatible with respect to these prefered bases. Denote the homology sequence induced by the above sequence by \mathcal{H}. By Milnor [2, Theorem 3.2] and by the assumption of induction,

$$
\begin{aligned}
\tau\left(C \otimes C^{\prime}\right) & =\tau(C \otimes D)+\tau\left(C \otimes D^{\prime}\right)+\tau(\mathcal{H}) \\
& =\chi(C) j_{*} \tau(D)+\chi(D) i_{*} \tau(C)+\chi(C) j_{*} \tau\left(D^{\prime}\right)+\chi\left(D^{\prime}\right) i_{*} \tau(C)+\tau(\mathscr{H}) \\
& =\chi(C) j_{*}\left(\tau(D)+\tau\left(D^{\prime}\right)\right)+\chi\left(C^{\prime}\right) i_{*} \tau(C)+\tau(\mathscr{H}) .
\end{aligned}
$$

A tedious but not difficult calculation shows that

$$
\tau(\mathscr{G})=\chi(C) j_{*}(-1)^{q}\left\{\left[b_{q}^{\prime} h_{q}^{\prime} / x\right]-\left[h_{q+1}^{\prime} b_{q}^{\prime} / y\right]\right\}
$$

On the other hand,

$$
\begin{aligned}
\tau\left(C^{\prime}\right)-\tau(D) & -\tau\left(D^{\prime}\right)=\sum_{i}(-1)^{i}\left[b_{i}^{\prime} h_{i}^{\prime} b_{i-1}^{\prime} / c_{i}^{\prime}\right]-(-1)^{q}\left[x / c_{q}^{\prime}\right] \\
& -\sum_{i=q+2}^{p}(-1)^{i}\left[b_{i}^{\prime} h_{i}^{\prime} b_{i-1}^{\prime} / c_{i}^{\prime}\right]-(-1)^{q+1}\left[b_{q+1}^{\prime} y / c_{q+1}^{\prime}\right] \\
& =(-1)^{q}\left\{\left[b_{q}^{\prime} h_{q}^{\prime} / c_{q}^{\prime}\right]-\left[b_{q+1}^{\prime} h_{q+1}^{\prime} b_{q}^{\prime} / c_{q+1}^{\prime}\right]-\left[x / c_{q}^{\prime}\right]+\left[b_{q+1}^{\prime} y / c_{q+1}^{\prime}\right]\right\} \\
& =(-1)^{q}\left\{\left[b_{q}^{\prime} h_{q}^{\prime} / x\right]-\left[h_{q+1}^{\prime} b_{q}^{\prime} / y\right]\right\} .
\end{aligned}
$$

Therefore $\tau\left(C \otimes C^{\prime}\right)-\chi(C) j_{*} \tau\left(C^{\prime}\right)-\chi\left(C^{\prime}\right) i_{*} \tau(C)=0$.

References

[1] K. W. Kwun and R. H. Szczarba: Product and sum theorems for Whitehead torsion. Ann. of Math., 82, 183-190 (1965).
[2] J. Milnor: Whitehead torsion. Bull. Amer. Math. Soc., 72, 358-426 (1966).
[3] J. H. C. Whitehead: Simplicial spaces, nuclei and m-groups. Proc. London Math. Soc., 45 (2), 243-327 (1939).
[4] -: Simple homotopy types. Amer. Jour. Math., 72, 1-57 (1950).

