194. On Free Contents

By Takayuki TAMURA

University of California, Davis, California, U.S.A.

(Comm. by Kenjiro SHODA, M.J.A., Nov. 12, 1968)

1. Introduction. An S-indecomposable semigroup is a semigroup which has no semilattice-homomorphic image except a trivial one. We will call an S-indecomposable semigroup \mathscr{B} -simple in the sense that a semigroup S is S-indecomposable if and only if it has no prime ideal, that is, S has no ideal I such that $I \neq S$ and $S \setminus I$ is a subsemigroup of S (cf. [1]).

Let S be a semigroup. Let a_1, \dots, a_n be a finite number of elements of S. All the elements x of S each of which is the product of all of a_1, \dots, a_n (admitting repeated use) form a subsemigroup of S. It is denoted by $C_S(a_1, \dots, a_n)$ or C_S and is called the content of a_1, \dots, a_n is S. We notice that a_1, \dots, a_n need not be distinct. For example, however, $C_S(a)$ is different from $C_S(a, a)$ in general: $C_S(a) = \{a^i; i \ge 1\}$ but $C_S(a, a) = \{a^i; i \ge 2\}$. Let F_n be the free semigroup generated by a_1, \dots, a_n . Then $C_{F_n}(a_1, \dots, a_n)$ is called the free content of a_1, \dots, a_n . The author did not use the terminology "content" and " \mathfrak{P} -simplicity" in the preceding papers [2], [3] but he proved there

- (1) A free content is \mathfrak{P} -simple.
- (2) A content is \mathfrak{P} -simple.
- (3) A semigroup is a semilattice-union of \mathfrak{P} -simple semigroups.

(4) In the greatest semilattice-decomposition (S-decomposition) of a semigroup, each congruence class is \mathfrak{P} -simple.

The author discussed these in the two ways: one way is along the direction, $(4) \rightarrow (3) \rightarrow (1) \rightarrow (2)$ after directly proving (4) [2]. The other way is along the direction, $(1) \rightarrow (2) \rightarrow (4) \rightarrow (3)$ after directly proving (1) [3]. The concept of content is important and interesting but its structure has not been studied so much. In this short note we report a few results on free contents. The detailed proof will be published elsewhere [4].

2. Rank. The positive number n of $C_{F_n}(a_1, \dots, a_n)$ is called the rank of a free content C_{F_n} . For simplicity the free content of rank n is denoted by \mathcal{F}_n .

$$\mathcal{F}_n = C_{F_n}(a_1, \cdots, a_n).$$

The letters a_1, \dots, a_n are called the generators of \mathcal{F}_n , but they are not elements of \mathcal{F}_n . We have the following theorem.

Theorem 1. \mathcal{F}_m is isomorphic onto \mathcal{F}_n if and only if m=n. The rank *m* of a free content \mathcal{F}_m is the minimum of *n*'s for which \mathcal{F}_m can be embedded into a free semigroup F_n as a maximal \mathfrak{P} -simple subsemigroup.

We observe some property of prime-factorization in a free content. The property is required to be invariant under isomorphism. Let $W \in \mathcal{F}_n = C_{F_n}(a_1, \dots, a_n)$, n > 1, and let $W = x_1 x_2 \cdots x_k$ where the set $\{x_1, \dots, x_k\}$ is equal to the set $\{a_1, \dots, a_n\}$. W is called a prime if $W \in \mathcal{F}_n$ but $\notin \mathcal{F}_n^2$. For $W = x_1 x_2 \cdots x_k$, define $\mathcal{L}(W) = x_1 x_2 \cdots x_l$, $l \leq k$, where $\{x_1, \dots, x_l\} = \{a_1, \dots, a_n\}$ but $\{x_1, \dots, x_{l-1}\} \neq \{a_1, \dots, a_n\}$. Then $\mathcal{L}(W)$ is called the left main of W. Likewise the right main $\mathcal{R}(W)$ of W can be defined. W is called left (right) minimal if $W = \mathcal{L}(W)$ $(W = \mathcal{R}(W))$. W is called minimal if $\mathcal{L}(W) = \mathcal{R}(W) = W$. The k of $W = x_1 \cdots x_k$ is denoted by k = |W|. W is called a permutation if |W| = n. Every element of \mathcal{F}_n is the product of primes but the factorization need not be unique. W is uniquely factorizable if and only if W is either a prime or $W = W_1 W_2$ where W_1 is left minimal and W_2 is right minimal. If W is factorized into the product of two primes then Wis called two-prime factorizable. Then we have characterization of permutations:

Lemma. W is a permutation in \mathcal{F}_n if and only if W^2 is uniquely factorizable, W^3 is two-prime factorizable and the number of two-prime factorizations of W^3 is the minimum of the numbers of those two-prime factorizations of elements of the form X^3 where X are minimal.

By using this lemma we can prove the former half of Theorem 1. The latter half is an immediate consequence.

We have other interesting results, Theorems 2, 3:

Theorem 2. \mathcal{F}_m is isomorphic into \mathcal{F}_n if and only if n > 1.

Theorem 2 is equivalent to (5) and (6) below.

(5) \mathcal{F}_m is isomorphic into \mathcal{F}_{m+1} .

(6) \mathcal{F}_m is isomorphic into \mathcal{F}_2 if m>2.

Theorem 3. If m > n, \mathcal{F}_m is homomorphic onto \mathcal{F}_n .

However the following question is still open.

Problem. If m < n, is \mathcal{F}_m homomorphic onto \mathcal{F}_n ?

3. Structure. Let S be a set and \mathfrak{B}_s denote the set of all binary operations defined on S. The two binary operations a^* and *a are defined on \mathfrak{B}_s for each $a \in S$ in the following way: For $\theta, \eta \in \mathfrak{B}_s, x$, $y \in S$.

 $\begin{array}{ll} x(\theta \ a^* \ \eta)y = (x \ \theta a)\eta y, & x(\theta \ *a \ \eta)y = x\theta(a \ \eta y).\\ \text{Let } T \text{ be a semigroup.} & \text{Consider a mapping } \Theta \text{ of } T \times T \text{ into } \mathfrak{B}_S :\\ (\alpha, \ \beta)\Theta = \theta_{\alpha,\beta}, & (\alpha, \ \beta) \in T \times T \end{array}$

Free Contents

subject to

$$\begin{array}{ll} \theta_{\alpha,\beta} \ a^* \ \theta_{\alpha\beta,\gamma} \!=\! \theta_{\alpha,\beta\gamma}^{} \!*\! a \ \theta_{\beta,\gamma} & \text{ for all } \alpha, \beta, \gamma \in T \\ & \text{ all } a \in S. \end{array}$$

Given S, T, Θ , a binary operation is defined on $S \times T$ by

(7) $(x, \alpha)(y, \beta) = (x\theta_{\alpha,\beta}y, \alpha\beta).$ The semigroup $S \times T$ with (7) is called a general product of a set S by

a semigroup T with respect to Θ and it is denoted by $S \times_{\Theta} T$ or $S > \langle T \rangle$.

Returning to free contents, let $\mathcal{F}=C_{\mathbb{F}_n}(a_1,\dots,a_n)$. For each $\alpha \in F_n^1=F_n \cup \{1\}$ (1 is a void word), the two transformations φ_α and ψ_α of \mathcal{F} are defined by $X\varphi_\alpha = X\alpha$, $\psi_\alpha X = \alpha X$, where $X \in \mathcal{F}$. Clearly $X(\alpha\beta) = (X\alpha)\beta$, $(\alpha\beta)X = \alpha(\beta X)$, $(\alpha X)\beta = \alpha(X\beta)$. Let \mathcal{L} be the set of all left minimal elements of \mathcal{F} . Each $X \in \mathcal{F}$ has a unique expression

 $X = A\varphi_{\alpha}$ for some $A \in \mathcal{L}$, $\alpha \in F_n^1$.

Then we have

Theorem 4. Let \mathcal{F} be a free content and let \mathcal{L} be the left zero semigroup defined on the set of all left minimal elements of \mathcal{F} . For each $A \in \mathcal{L}$ we define a binary operation θ_A on F_n^1 by

$$\begin{array}{c} u \vartheta_A \beta = u A \beta, \qquad u, \ \beta \in F^1_n. \\ Let \ \Theta = \{ \theta_A \ ; A \in \mathcal{L} \}. \quad Then \ \mathcal{F} \ is \ is omorphic \ onto \ F^1_n \overline{\times}_{\theta} \mathcal{L}, \ i.e., \ the \ set \\ F^1_n \times \mathcal{L} = \{ (\alpha, A) \ ; \ \alpha \in F^1_n, \ A \in \mathcal{L} \} \end{array}$$

in which the operation is defined by

 $(\alpha, A)(\beta, B) = (\alpha \theta_B \beta, A).$

However, the abstract characterization of a free content in terms of general product is still open. Finally we have the decomposition theory of free contents.

Let ξ_i and σ be the relations on a free content \mathcal{F} defined as follows :

 $X\xi_l Y$ iff $\mathcal{L}(X) = \mathcal{L}(Y).$

 $X\sigma Y$ iff $\mathcal{L}(X) = \mathcal{L}(Y)$ and $\mathcal{R}(X) = \mathcal{R}(Y)$.

Theorem 5. ξ_i is the smallest left zero congruence on \mathcal{F} , and σ is the smallest idempotent congruence on \mathcal{F} .

References

- M. Petrich: The maximal semilattice decomposition of a semigroup. Math. Zeit., 85, 68-82 (1964).
- [2] T. Tamura: The theory of construction of finite semigroups. I. Osaka Math. J., 8, 243-261 (1956).
- [3] —: Another proof of a theorem concerning the greatest semilatticedecomposition of a semigroup. Proc. Japan Acad., **40**, 777-780 (1964).
- [4] —: The study of closets and free contents related to semilattice decomposition of semigroups (to be published in Proc. of Semigroup Symposium, Academic Press).

No. 9]