223. On a Product Theorem in Dimension^{*}

By Yukihiro KODAMA

Department of Mathematics, Tokyo University of Education

(Comm. by Kinjirô KUNUGI, M.J.A., Dec. 12, 1968)

1. Let X be a topological space and G an abelian group. The cohomological dimension D(X:G) of X with respect to G is the largest integer n such that $H^n(X, A:G) \neq 0$ for some closed set A of X, where H^* is the Čech cohomology group based on the system of all locally finite open coverings. If X is normal and dim $X < \infty$, then $D(X:Z) = \dim X$ by [2] and [5, II]. Here dim X is the covering dimension of X and Z is the additive group of integers.

In this paper we shall show a product theorem for cohomological dimension with respect to certain abelian groups. The theorem is given by proving a product theorem for covering dimension and by applying the same method as developed in [3] and [4]. We use the following groups:

Q = the rational field, $Z_p =$ the cyclic group of order p,

 R_p = the subgroup of Q consisting of all rationals whose denominators are coprime with p.

Here p is a prime. Let G be one of the groups Z, Q, R_p , and Z_p , p a prime. We shall show that the relation

 $(*) \qquad D(X \times Y : G) \leq D(X : G) + D(Y : G)$

holds if either (i) X is a paracompact Morita space and Y metrizable, or (ii) X is a Lindelöf Morita space and Y a σ -space. See 2 for definition of Morita spaces and σ -spaces. It is well known that the relation (*) is not true for arbitrary groups. Also, the equality $D(X \times Y:G) = D(X:G) + D(Y:G)$ does not generally hold even if G is Q or Z_p , and X and Y are separable metric spaces. Next, let βX be the Stone-Čech compactification of X. If G is finitely generated, then it is known by [5] that $D(\beta X:G) = D(X:G)$. We shall prove that $D(\beta X:G) \ge D(X:G)$ if X is a paracompact Morita space and G is Q or R_p , p a prime. Throughout the paper all spaces are Hausdorff and maps are continuous.

2. Let m be a cardinal number ≥ 1 . A topological space X is called an m-Morita space if for a set Ω of power m and for any family $\{G(\alpha_1, \dots, \alpha_i) | \alpha_1, \dots, \alpha_i \in \Omega; i=1, 2, \dots\}$ of open sets of X such that $G(\alpha_1, \dots, \alpha_i) \subset G(\alpha_1, \dots, \alpha_i, \alpha_{i+1})$ for $\alpha_1, \dots, \alpha_i, \alpha_{i+1} \in \Omega$, $i=1, 2, \dots$,

^{*)} Dedicated to Professor A. Komatsu on his sixtieth birthday.

there is a family $\{F(\alpha_1, \dots, \alpha_i) | \alpha_1, \dots, \alpha_i \in \Omega; i=1, 2, \dots\}$ of closed sets of X satisfying the following conditions;

(i) $F(\alpha_1, \dots, \alpha_i) \subset G(\alpha_1, \dots, \alpha_i)$ for $\alpha_1, \dots, \alpha_i \in \Omega$, $i=1, 2, \dots$; (ii) if $X = \bigcup_{i=1}^{\infty} G(\alpha_1, \dots, \alpha_i)$ for a sequence $\{\alpha_i\}$ then $X = \bigcup_{i=1}^{\infty} F(\alpha_1, \dots, \alpha_i)$. If X is an m-Morita space for any cardinal number m, then X is called a Morita space. An m-Morita space was introduced by Morita [11] and called a P(m) space, and it played a very important role in the theory of product spaces. A family \mathfrak{F} of subsets of a space is called a net if for any point x and any neighborhood U of x there is a member F of \mathfrak{F} such that $x \in F \subset U$. A space X is called a σ -space if it is collectionwise normal and it has a σ -locally finite net. Obviously a metrizable space is a σ -space but a σ -space is not necessarily metrizable. Also, it is known that a σ -space is paracompact and perfectly normal (Okuyama [13]). The main theorem in the paper is now stated; its proof is given in the sequence of lemmas.

Theorem 1. Let G be one of the groups Z, Q, R_p , and Z_p , p a prime. and let X and Y be spaces with finite covering dimension. If either

- (1) X is a Lindelöf Morita space and Y is a σ -space, or
- (2) X is a paracompact m-Morita space and Y is a metrizable space of weight $\leq m$,

then the following relation holds:

 $(*) \qquad D(X \times Y:G) \leq D(X:G) + D(Y:G).$

Let us begin to prove the following lemma.

Lemma 1. Let X be a normal space and Y a subspace. For any finite open covering \mathfrak{U} of Y, suppose that there is a finite collection \mathfrak{B} of open sets in X such that (i) the restriction $\mathfrak{B} | Y$ is a covering of Y which refines \mathfrak{U} and (ii) each member of \mathfrak{B} is an F_{σ} set in X. Then Y is normal and dim $Y \leq \dim X$. Moreover, if dim $X < \infty$ and G is finitely generated, then $D(Y:G) \leq D(X:G)$.

Proof. For a given finite open covering \mathfrak{U} of Y, take a finite collection \mathfrak{B} of open sets of X satisfying the conditions (i) and (ii). Put $X_0 \equiv \bigcup \{V : V \in \mathfrak{B}\}$. Since X_0 is an F_{σ} open set of X, X_0 is normal and dim $X_0 \leq \dim X$ by [9, Theorem 2.1]. Take a finite open covering \mathfrak{B} of X_0 such that \mathfrak{B} refines \mathfrak{B} and order of $\mathfrak{M} \leq \dim X + 1$. Since X_0 is normal, \mathfrak{M} is a normal covering. Thus the restriction $\mathfrak{M} \mid Y$ is a normal covering refining \mathfrak{U} and of order $\leq \dim X + 1$. This implies that Y is normal and dim $Y \leq \dim X$. The second part of the lemma is proved by a similar way as in the proof of [6, Theorem 1].

Lemma 2. Under the assumption (1) or (2) in Theorem 1 $\dim (X \times Y) \leq \dim (\beta X \times Y).$

Y. KODAMA

Proof. We only prove the case (1). The case (2) is a consequence of Lemma 1 and [6, Lemma 4]. Let Y be a σ -space and let $\mathfrak{B} = \bigcup \mathfrak{B}_i$ be a net of Y such that $\mathfrak{B}_i = \{V_{i_{\sigma}} : \alpha \in \Omega\}, i=1, 2, \cdots$, is a σ -locally finite collection of closed sets. We can assume each \mathfrak{B}_i is closed with respect to finite intersection. Let us put $F(\alpha_1, \dots, \alpha_i) = \bigcap^{\circ} V_{\nu \alpha_{\nu}}, \alpha_1, \dots, \alpha_i$ $\alpha_{i} \in \Omega$. Then $\mathfrak{F}_{i} = \{F(\alpha_{1}, \dots, \alpha_{i}) : \alpha_{1}, \dots, \alpha_{i} \in \Omega\}$ is locally finite in Y for $i=1, 2, \cdots$. Since Y is collectionwise normal and countably paracompact, there is a collection $\mathfrak{W}_i = \{W(\alpha_1, \dots, \alpha_i) : \alpha_1, \dots, \alpha_i \in \Omega\}$ of open sets of Y such that $F(\alpha_1, \cdots, \alpha_i) \subset W(\alpha_1, \cdots, \alpha_i),$ (2.1) \mathfrak{W}_i is locally finite in Y for $i=1, 2, \cdots$. (2.2)Let $\mathfrak{U} = \{U_k : k=1, \dots, s\}$ be a finite open covering of $X \times Y$. For $k=1, \dots, s \text{ and } \alpha_1, \dots, \alpha_i \in \Omega$, let $T(\alpha_1, \dots, \alpha_i: k) = \{T_i\}$ be the collection of subsets in X satisfying the following condition; each T_{λ} is an open F_{σ} set in X and there is an open set V_{λ} in Y (2.3)such that $F(\alpha_1, \dots, \alpha_i) \subset V_i \subset W(\alpha_1, \dots, \alpha_i)$ and $T_i \times V_i \subset U_k$. Put $T(\alpha_1, \dots, \alpha_i: k) = \bigcup \{T_i: T_i \in \mathfrak{T}(\alpha_1, \dots, \alpha_i: k)\}$ and $T(\alpha_1, \dots, \alpha_i)$ $= \bigcup_{k=1}^{s} T(\alpha_{1}, \cdots, \alpha_{i} : k).$ Then $T(\alpha_{1}, \cdots, \alpha_{i}, \alpha_{i+1}) \supset T(\alpha_{1}, \cdots, \alpha_{i})$ for α_{1} , $\cdots, \alpha_i, \alpha_{i+1} \in \Omega, \quad i=1, 2, \cdots, \text{ and } \{T(\alpha_1, \cdots, \alpha_i) \times F(\alpha_1, \cdots, \alpha_i) : \alpha_1, \ldots, \alpha_i\}$ $\dots, \alpha_i \in \Omega, i=1, 2, \dots$ covers $X \times Y$. Since X is a Morita space, there is a collection $\{S(\alpha_1, \dots, \alpha_i) : \alpha_1, \dots, \alpha_i \in \Omega, i=1, 2, \dots\}$ of closed sets in X such that $S(\alpha_1, \dots, \alpha_i) \subset T(\alpha_1, \dots, \alpha_i), \alpha_1, \dots, \alpha_i \in \Omega, i=1, 2, \dots, \text{ and }$ $\{S(\alpha_1, \dots, \alpha_i) \times F(\alpha_1, \dots, \alpha_i) : \alpha_1, \dots, \alpha_i \in \Omega, 1, 2, \dots\}$ covers (2.4) $X \times Y$. Since $S(\alpha_1, \dots, \alpha_i)$ is normal and $\{T(\alpha_1, \dots, \alpha_i : k) : k = 1, \dots, s\}$ covers $S(\alpha_1, \dots, \alpha_i)$, there is a closed set $P(\alpha_1, \dots, \alpha_i : k)$ in X such that $S(\alpha_1, \dots, \alpha_i) = \bigcup_{k=1}^{s} P(\alpha_1, \dots, \alpha_i : k)$ and $P(\alpha_1, \dots, \alpha_i : k) \subset T(\alpha_1, \dots, \alpha_i : k)$ for $k=1, \dots, s$. Now the collection $\mathfrak{T}(\alpha_1, \dots, \alpha_i: k)$ covers a Lindelöf space $P(\alpha_1, \dots, \alpha_i: k)$ and hence a countable subcollection $\{T_{ij}: j\}$ =1, 2, \cdots } of $\mathfrak{T}(\alpha_1, \cdots, \alpha_i : k)$ which covers $P(\alpha_1, \cdots, \alpha_i : k)$. For each member $T_{\lambda j}$, take an open \mathbf{F}_{σ} set $H_{\lambda j}$ in βX such that $H_{\lambda j} \cap X = T_{\lambda j}$. For each $H_{\lambda j}$, there is an open set $V_{\lambda j}$ of Y by (2.3) such that $(H_{\lambda j} \times V_{\lambda j})$ $\cap (X \times Y) \subset U_k$. Put $H(\alpha_1, \dots, \alpha_i:k) = \bigcup_{i=1}^{\infty} H_{\lambda i} \times V_{\lambda j}$. Then $H(\alpha_1, \dots, \alpha_i:k)$ is an open \mathbf{F}_{a} set in $\beta X \times Y$ such that $P(\alpha_1, \cdots, \alpha_i: k) \times F(\alpha_1, \cdots, \alpha_i) \subset H(\alpha_1, \cdots, \alpha_i: k) \cap (X \times Y)$ $\subset U_k \cap (S(\alpha_1, \cdots, \alpha_i: k) \times W(\alpha_1, \cdots, \alpha_i)).$ (2.5)

Finally, put $V_k^i = \bigcup \{H(\alpha_1, \dots, \alpha_i : k) : \alpha_1, \dots, \alpha_i \in \Omega\}$ and $V_k = \bigcup_{i=1}^{\infty} V_k^i$.

Since the collection $\{S(\alpha_1, \dots, \alpha_i : k) \times W(\alpha_1, \dots, \alpha_i) : \alpha_1, \dots, \alpha_i \in \Omega\}$ is locally finite in $\beta X \times Y$ by (2.2), $\{H(\alpha_1, \dots, \alpha_i : k) : \alpha_1, \dots, \alpha_i \in \Omega\}$ is locally finite in $\beta X \times Y$. Thus V_k^i and hence V_k are open F_σ in $\beta X \times Y$. Therefore the conditions (i) and (ii) in Lemma 1 are satisfied if $\beta X \times Y$, $X \times Y$, \mathfrak{U} , and $\{V_k\}$ replace X, Y, \mathfrak{U} , and \mathfrak{V} respectively. The lemma follows from Lemma 1.

Proof of Theorem 1 in case G=Z. By Morita [10, Theorem 4] we know dim $(\beta X \times Y) \leq \dim \beta X + \dim Y = \dim X + \dim Y$. Thus the theorem is a consequence of Lemma 2.

Nagami [12] showed that if X is a paracompact Morita space and Y is a σ -space then $X \times Y$ is paracompact. It is open whether the relation dim $(X \times Y) \leq \dim X + \dim Y$ is true or not in case X is a paracompact Morita space and Y is a σ -space.

Next, let us prove Theorem 1 in case G is either Q, R_p or Z_p , p a prime. We shall apply a technique used in [3, p. 49] and [4, pp. 171– 172] and lately by Kuzminov. Consider the 2-dimensional Cantor manifolds M_0 , M_p in [3, p. 44] and Pontrjagin's Cantor manifold P_p . We denote M_0 , M_p , and P_p by M_Q , M_{R_p} , and M_{Z_p} respectively.

Lemma 3. Let X be a paracompact space with dim X < k and let G be any of the groups Q, R_p , and Z_p , p a prime. Then $D(X:G) = \dim(X \times M_g^k) - 2k$. Here M_g^k is the k-fold product $M_g \times M_g \times \cdots \times M_g$.

If $G=Z_p$, then the lemma is proved by Kuzminov [7]. To complete the proof, as known in the proof of [4, Theorem 2], it is enough to show the following lemma.

Lemma 4. Let G = Q or R_p , p a prime. If X is a paracompact space with finite covering dimension, then

(1) $D(X:G) = \dim X \text{ if and only if } \dim (X \times M_G) = \dim X + 2.$

 $(2) D(X \times M_G:G) = D(X:G) + 2.$

Proof. We prove only (2). The proof of (1) is similar. Let us remind the construction of M_G . Let T be the boundary of M_G (see [3, p. 44]) and let $\tilde{M}_G = M_G/T$ and t_0 the point corresponding to T. Then it is easy to show that

(2.6) $H^{2}(\tilde{M}_{G}) \cong G, H^{1}(\tilde{M}_{G}) = 0, \text{ and } H^{0}(\tilde{M}_{G}) \cong Z.$

Let A be a closed set of X and let $\tilde{X} = X/A$ and a_0 the point corresponding to A. Let n > 0. Then we have

$$(2.7) \qquad \begin{array}{l} H^{n+2}((X, A) \times (M_G, T) : G) \cong H^{n+2}((X, a_0) \times (M_G, t_0) : G) \\ \cong H^{n+2}(\tilde{X} \times \tilde{M}_G : G) \cong H^n(\tilde{X} : G) \oplus H^{n+2}(\tilde{X} : G) \cong H^n(X, A : G) \\ \oplus H^{n+2}(X, A : G). \end{array}$$

The first isomorphism is a consequence of [6, Lemma 6], the second follows from the cohomology sequence of $(\tilde{X} \times \tilde{M}_{G}, \tilde{X} \times \{t_{0}\} \cup \{a_{0}\} \times \tilde{M}_{G})$, the third comes from (2.6) and [1, Theorem C], and the fourth is

trivial. To complete the proof, let D(X:G)=n. We can assume that n>0. There is a closed set A of X such that $H^n(X, A:G)\neq 0$. By (2.7) we can know $D(X\times M_G:G)\geq n+2$. Conversely, let $D(X\times M_G:G)=n+2$. Then, by [5, I, Theorem 5] and the structure of M_G , there is a closed set A of X such that $H^{n+2}((X, A) \times (M_G, T):G)\neq 0$, where T is the boundary of M_G . By (2.7) $H^n(X, A:G)\neq n$ and hence $D(X:G)\geq n$. This completes the proof.

Proof of Theorem 1 in case G is either Q or R_p . Let k be a positive integer such that k > Max (dim X, dim Y). Since dim $(X \times Y) < 2k$, by the theorem proved already in case G = Z, Lemma 3 means that $D(X \times Y:G) = \dim (X \times Y \times M_G^{2k}) - 4k$. Since M_G^k is a compact metric space, if X is an m-Morita space then $X \times M_G^k$ is an m-Morita space by [11, Corollary 3.5] and if Y is a σ -space then $Y \times M_G^k$ is a σ -space. Thus we know that dim $(X \times Y \times M_G^{2k}) \le \dim (X \times M_G^k) + \dim (Y \times M_G^k)$. Hence dim $(X \times Y \times M_G^{2k}) - 4k \le \dim (X \times M_G^k) - 2k + \dim (Y \times M_G^k) - 2k = D(X:G) + D(Y:G)$ by Lemma 3. This completes the proof.

Let Q_p be the additive group of *p*-adic rationals mod 1. Then $D(M_{Z_p} \times M_{Z_p}; Q_p) = 3$ and $D(M_{Z_p}; Q_p) = 1$. Hence Theorem 1 is not generally true for $G = Q_p$. Also, we can not take the equality in place of (*) in Theorem 1 even if G is Q or Z_p . Because, let X be the set of points in Hilbert space all of whose coordinates are rational. Since dim X = 1 and $X \times X$ is homeomorphic to X, $D(X:G) = D(X \times X:G) = 1$ for any group G.

Theorem 2. Let G = Q or R_p , p a prime. If X is a paracompact 2-Morita space with finite covering dimension, then $D(\beta X : G) \ge D(X : G)$, where βX is the Stone-Čech compactification of X.

Proof. Let dim X < k. By [11, Corollary 4.6] X is an \aleph_0 -Morita space. Since weight of $M_G^k = \aleph_0$, Lemma 2 shows that dim $(X \times M_G^k) \leq \dim (\beta X \times M_G^k)$. Thus $D(X:G) = \dim (X \times M_G^k) - 2k \leq \dim (\beta X \times M_G^k) - 2k = D(\beta X:G)$. This completes the proof.

Let X_0 be the metric space constructed by P. Roy [14]. Then ind $X_0=0$ and dim $X_0=1$. Take the Freudenthal compactification γX_0 of X_0 . Then ind $\gamma X=0$ by [8, Theorem 6] and hence dim $\gamma X_0=0$ by the compactness of γX_0 . Thus $D(X_0:G) > D(\gamma X_0:G)$ for any group G. Therefore Theorem 2 is not generally true for an arbitrary compactification. The fact mentioned above was informed to me by Professor Morita.

References

- V. Bartik: Cohomology of Alexandroff-Čech and mappings to Eilenberg-MacLane. Mat. Sbornik, 76, 231-238 (1968).
- [2] C. H. Dowker: Mapping theorems for non-compact spaces. Amer. J. Math., 69, 200-242 (1947).

No. 10]

- [3] Y. Kodama: Test space for homological dimension. Duke Math. J., 29, 41-50 (1962).
- [4] ——: Some characterizations of homological dimension. Michigan Math.
 J., 9, 167-172 (1962).
- [5] ——: Note on cohomological dimension for non-compact spaces. I, II.
 J. Math. Soc. Japan, 18, 343-359 (1966), 20, 490-497 (1968).
- [6] ——: On subset theorems and the dimension of products (to appear in American Journal of Mathematics).
- [7] V. Kuzminov: Test spaces for cohomological dimension of paracompact spaces. Dokl. Akad. Nauk SSSR., 181, 538-541 (1968).
- [8] K. Morita: On bicompactification of semibicompact spaces. Sci. Rep. Tokyo Bunrika Daigaku, Sec. A, 4, 221–229 (1952).
- [9] —: On the dimension of normal spaces. I. Japanese J. Math., 20, 5-36 (1950).
- [10] ——: On the dimension of product spaces. Amer. J. Math., 75, 205-223 (1953).
- [11] ——: Products of normal spaces with metric spaces. Math. Annalen, 154, 365-382 (1964).
- [12] K. Nagami: σ -spaces and product space (to appear).
- [13] A. Okuyama: Some generalizations of metric spaces, their metrization theorems and product spaces. Sci. Rep. Tokyo Kyoiku Daigaku Sec. A., 9, 236-254 (1967).
- P. Roy: Failure of equivalence of dimension concepts for metric spaces. Bull. Amer. Math. Soc., 68, 609-613 (1962).