10. On Weak Convergence of Transformations in Topological Measure Spaces

By Ryotaro SATO

Department of Mathematics, Josai University, Saitama

(Comm. by Kinjirô KUNUGI, M. J. A., Jan. 13, 1969)

1. Introduction. A sequence $\{T_n\}$ of invertible measure-preserving transformations in the unit interval [0, 1] is said to be convergent weakly to the invertible measure-preserving transformation T if $\lim_{n \to \infty} ||f \circ T_n - f \circ T|| = 0$ for every integrable function f, with $|| \cdot ||$ denoting L^1 -norm. It is well-known that (α) and (β) in Theorem 1 below are equivalent.

In this paper we prove that if X is a locally compact metrizable space and μ a σ -finite Radon measure on X, then the equivalence between (α) and (β) also holds (Theorem 1). We see that this generalizes a theorem of Papangelou [2, Theorem 2]. Then it will be natural to ask: does the metrizability of X be dropped in Theorem 1 when X is a compact Hausdorff space? Theorem 3 asserts that the answer is negative.

2. An extension of Papangelou's theorems. Let X be a locally compact Hausdorff space and \mathfrak{B} the σ -field generated by the open subsets of X. The members of \mathfrak{B} will be called the Borel subsets of X. Let μ_1 be a measure on \mathfrak{B} such that

- (i) $\mu_1(K)$ is finite for every compact subset K of X,
- (ii) $\mu_1(V) = \sup\{\mu_1(K) | K \text{ is compact and } K \subset V\}$ for every open subset V of X,
- (iii) $\mu_1(A) = \inf\{\mu_1(V) | V \text{ is open and } A \subset V\}$ for every Borel subset A of X.

We denote by μ the outer measure induced by μ_1 and denote by \mathfrak{M} the σ -field of all subsets of X which are μ -measurable. We say μ on \mathfrak{M} a Radon measure on X. A subset E of X which belongs to \mathfrak{M} will be called measurable in X.

We denote by G the group of all invertible μ -measure-preserving transformations in X.

Difinition. The sequence $\{T_n\}$ in G converges to $T \in G$ weakly if $\lim_{n \to \infty} \mu(T_nA + TA) = 0$ for every measurable subset A of X with $\mu(A) < \infty$, or equivalently, if $\lim \|f \circ T_n - f \circ T\| = 0$ for every $f \in L^1$.

Theorem 1. Let X be a locally compact metrizable space and μ a σ -finite Radon measure on X. If T, T_n $(n=1, 2, 3, \dots)$ are in G then

- (α) and (β) below are equivalent:
 - (a) $\{T_n\}$ converges to T weakly.
 - (β) Every subsequence $\{T_{k(n)}\}$ of $\{T_n\}$ has a subsequence $\{T_{k(l(n))}\}$ which converges to T almost everywhere.

The proof of Theorem 1 requires some lemmas.

Lemma 1. Let μ be a σ -finite Radon measure on a locally compact Hausdorff space X. Then there exists a σ -compact set E such that $\mu(X-E^{\circ})=0$, where E° is the interior of E.

Proof. Let $X = \bigcup_{n=1}^{\infty} X_n$ and X_n $(n=1, 2, 3, \cdots)$ be mutually disjoint Borel sets with finite measure. Let ε be an arbitrary positive rational number. By the property (iii) of μ , there exists an open set V_n in Xsuch that $\mu(V_n - X_n) < \varepsilon/2^{n+1}$ and $X_n \subset V_n$. Then by the property (ii) of μ , there exists a compact set K_n in X such that $\mu(V_n - K_n) < \varepsilon/2^{n+1}$ and $K_n \subset V_n$. Hence we have

 $\mu(K_n+X_n)\!\leq\!\mu(K_n+V_n)+\mu(V_n+X_n)\!<\!\varepsilon/2^{n+1}+\varepsilon/2^{n+1}\!=\!\varepsilon/2^n.$ Therefore

$$\mu(X-\cup K_n) \leq \sum_{n=1}^{\infty} \mu(K_n+X_n) < \sum_{n=1}^{\infty} \varepsilon/2^n = \varepsilon.$$

Now if we choose a compact set $K_n(\varepsilon)$ such that $(K_n(\varepsilon))^{\circ} \supset K_n$, and if we put

 $E = \bigcup \{K_n(\varepsilon) | n = 1, 2, 3, \dots; \varepsilon \text{ is a positive rational number}\}$ then E is σ -compact and $\mu(X - E^\circ) = 0$. The proof is completed.

Let T_1 and T_2 be mappings of X into itself. Then we define the mapping denoted by $T_1 \times T_2$ of X into $X \times X$ as follows:

 $(T_1 \times T_2)x = (T_1x, T_2x)$ $(x \in X).$

Lemma 2. Let X be a locally compact metrizable space and μ a σ -finite Radon measure on X. If T_1 and T_2 are measure-preserving transformations of (X, \mathfrak{M}, μ) into itself, then the inverse image $(T_1 \times T_2)^{-1}(B)$ of every Borel subset B of $X \times X$ is a measurable subset of X.

Proof. For the proof if it sufficient to show that $(T_1 \times T_2)^{-1}(V)$ is a measurable subset of X for any open subset V of $X \times X$. Let V be open in $X \times X$. By Lemma 1 there exists a σ -compact subset E of X such that $\mu(X-E)=0$. Evidently E is separable. Let $\{x_n \mid n=1,2,3,\cdots\}^ \supset E$, and put $F = \{x_n \mid n=1, 2, 3, \cdots\}^-$. Let d be a metric on X which is compatible with the topology of X. Then we have $V \cap (F \times F)$

 $\subset \bigcup igg\{ U(x_n) imes U(x_m) \mid U(x_n), \ U(X_m) \ ext{are some ε-neighborhoods of x_n,} \ x_m, \ ext{respectively, where ε is rational and} \ U(x_n) imes U(x_m) \subset V igg\}.$

In fact, if $(x, y) \in V \cap (F \times F)$ then there exist ε -neighborhoods U(x) and U(y) such that $U(x) \times U(y) \subset V$. Since $\{x_n | n=1, 2, 3, \dots\}$ is dense in

F, then for some x_n and x_m it follows that $d(x, x_n) < \varepsilon/3$ and $d(y, x_m) < \varepsilon/3$. If $U(x_n)$ and $U(x_m)$ are $2\varepsilon/3$ -neighborhoods of x_n and x_m , respectively, then $(x, y) \in U(x_n) \times U(x_m) \subset V$. Hence $(T_1 \times T_2)^{-1}(V)$

$$\begin{array}{l} (Y) = (T_1 \times T_2)^{-1} (V - (F \times F)) \cup (T_1 \times T_2)^{-1} (V \cap (F \times F)) \\ = (T_1 \times T_2)^{-1} (V - (F \times F)) \cup (T_1 \times T_2)^{-1} (\cup \{U(x_n) \times U(x_m)\}) \\ = (T_1 \times T_2)^{-1} (V - (F \times F)) \cup \bigcup \{(T_1 \times T_2)^{-1} (U(x_n) \times U(x_m))\}. \end{array}$$
(1)

On the other hand, $(T_1 \times T_2)^{-1}(V - (F \times F))$ is contained in $T_1^{-1}(X - F)$ $\cup T_2^{-1}(X - F)$ of measure zero and so it is measurable. The measurability of $(T_1 \times T_2)^{-1}(U(x_n) \times U(x_m))$ is now obvious. By (1), $(T_1 \times T_2)^{-1}(V)$ is a countable union of measurable subsets of X and hence it is measurable. This completes the proof.

Now using the above lemmas, we prove Theorem 1.

Proof of Theorem 1. (a) implies (β) : By Lemma 1, there exists a σ -compact set $E = \bigcup \{K_n | n = 1, 2, 3, \cdots\}$ such that K_n is compact for each n and $\mu(X - E^\circ) = 0$. Since E is separable, there exists a countable set $\{x_n | n = 1, 2, 3, \cdots\}$ in E such that $\{x_n | n = 1, 2, 3, \cdots\}^- \supset E$. We put $F = \{x_n | n = 1, 2, 3, \cdots\}^-$. Then $F^\circ \supset E^\circ$. Thus $\mu(X - F^\circ) = 0$. (2)

Let F_{∞} be the one point compactification of F. Since F_{∞} is a compact Hausdorff space with countable open basis, F_{∞} is metrizable with some metric d. If we denote by $\mathfrak{C}(F_{\infty})$ the space of all real-valued continuous functions on F_{∞} , then using the Stone-Weierstrass theorem it can be easily shown that $\mathfrak{C}(F_{\infty})$ is separable relative to its uniform topology. Since the space $\mathfrak{C}_{00}(F)$ of all real-valued continuous functions on F with compact supports is a subspace of $\mathfrak{C}(F_{\infty})$, $\mathfrak{C}_{00}(F)$ is separable relative to its uniform topology. Let $\{f_j | j=1, 2, 3, \cdots\}$ be a countable dense subset of $\mathfrak{C}_{00}(F)$. We extended f_j to g_j on X as follows: $g_j(x)$ $=f_j(x)$ if $x \in F$ and $g_j=0$ on X-F. Then g_j is an integrable function on X. By (α) , we have

$$\lim_{n\to\infty}\int_X |(g_j\circ T_n)x-(g_j\circ T)x|d\mu(x)=0$$

for $j=1, 2, 3, \cdots$. Thus for each j there exists a subsequence $\{T_{k(j,n)}\}$ of $\{T_n\}$ such that

$$\lim g_{j}(T_{k(j,n)}x) = g_{j}(Tx) \qquad \text{a.e.}$$
(3)

Therefore we can apply the Cantor diagonalization technique to obtain a subsequence $\{T_{k(n)}\}$ of $\{T_n\}$ and a set N of measure zero such that if $x \notin N$

$$\lim_{\substack{n \to \infty \\ +}} g_j(T_{k(n)}x) = g_j(Tx) \quad \text{for each } j.$$
(4)

Then we see that

$$\lim T_{k(n)} x = T x \qquad \text{a.e.} \qquad (5)$$

In fact, $N \cup T^{-1}(X-F^{\circ}) \cup \bigcup \{T_n^{-1}(X-F^{\circ}) | n=1, 2, 3, \cdots\}$ is of measure

R. SATO

[Vol. 45,

zero, and if $x \notin N \cup T^{-1}(X - F^{\circ}) \cup \bigcup \{T_n^{-1}(X - F^{\circ}) \mid n = 1, 2, 3, \cdots\}$ then $Tx, T_n x \in F.$ (6)

Let V(Tx) be a neighborhood of Tx such that $V(Tx) \subset F^{\circ}$ and $V(Tx)^{-}$ is compact. Let h be a continuous function on X such that $0 \leq h \leq 1$, h(Tx)=1 and h=0 on X-V(Tx). The restriction of h to F is a function of $\mathfrak{C}_{00}(F)$. Thus there exists an i_0 such that

$$|h(y) - f_{i_0}(y)| < 1/3$$
 for all $y \in F$. (7)

Since $x \notin N$,

$$\lim g_{i_0}(T_{k(n)}x) = g_{i_0}(Tx).$$

Hence there exists some $\overset{n \to \infty}{N_0}$ such that $n \ge N_0$ implies $|g_{i_0}(T_{k(n)}x) - g_{i_0}(Tx)| < 1/3$. Comparing (6) and (7), it follows that if $n \ge N_0$ then $|h(Tx) - f_{i_0}(T_{k(n)}x)| < 2/3$. Since h(Tx) = 1, this implies that $f_{i_0}(T_{k(n)}x) > 1/3$ for $n \ge N_0$. Then from (7),

 $h(T_{k(n)}x) > 0 \quad \text{for each } n \ge N_0. \tag{8}$ This implies that $\{T_{k(n)}x\}$ converges to Tx.

(β) implies (α): By virtue of Lemma 2, the proof runs on the same line as that of corresponding part of [2, Theorem 2], and so we omit the proof here.

Theorem 2. Let X be a locally compact metrizable space and μ a σ -finite Radon measure on X. Let G be the group of all automorphisms of the measure space (X, \mathfrak{M}, μ) . The weak topology on G is the finest topology \mathfrak{T} such that if a sequence $\{T_n\}$ in G converges to a transformation T in G almost everywhere then \mathfrak{T} -lim $T_n = T$.

Proof. A proof analogous to that of [2, Theorem 3] suffices.

3. A counter-example for a compact non-metrizable space. In this section we show that the equivalence between (α) and (β) in Theorem 1 does not necessarily hold when X is a compact non-metrizable Hausdorff space and μ a Radon measure on X.

Let A be any nonvoid index set and let for each α in A there correspond a compact abelian group H_{α} with the normalized Haar measure λ_{α} on \mathfrak{M}_{α} , where \mathfrak{M}_{α} is the σ -field of the λ_{α} -measurable subsets of H_{α} . We denote by $(\otimes H_{\alpha}, \otimes \mathfrak{M}_{\alpha}, \otimes \lambda_{\alpha})$ the product measure space of the measure spaces $(H_{\alpha}, \mathfrak{M}_{\alpha}, \lambda_{\alpha})$. Then we have the following

Lemma 3. The above $\otimes \lambda_{\alpha}$ is the restriction to $\otimes \mathfrak{M}_{\alpha}$ of the normalized Haar measure m on $H \equiv \otimes H_{\alpha}$ considered as the direct topological group of H_{α} . Moreover the outer measure induced by $\otimes \lambda_{\alpha}$ coincides with the outer measure induced by m.

Proof. The first half of Lemma 3 is well-known (see for example $[1, \S13 \text{ and } (15.17. j)]$), hence it suffices to prove the second half.

Let *E* be any *m*-measurable subset of *H*. Then it is known that there exist Baire subsets E_1 and E_2 of *H* such that $E_1 \subset E \subset E_2$ and $m(E_2 - E_1) = 0$ (see [1, (19.30)]). Here we call *B* a Baire subset of *H* if B is a member of the σ -field generateded by the open subsets of H written in the form $\{x \in H \mid f(x) > 0\}$ by some real-valued continuous function f on H. Let V be an open subset of H written in the above form. Then V is σ -closed. Since H is compact, V is σ -compact. Then it is easy to see that V is a countable union of open sets which are members of $\otimes \mathfrak{M}_{\alpha}$. This implies that every Baire subset of H belongs to $\otimes \mathfrak{M}_{\alpha}$. This together with the first half of Lemma 3 implies that

$$\otimes \lambda_{\alpha}(E_1) = m(E) = \otimes \lambda_{\alpha}(E_2).$$

The second half of Lemma 3 is now obvious.

Theorem 3. There exist a compact non-metrizable abelian group H with the normalized Haar measure m and a sequence $\{T_n\}$ of invertible m-measure-preserving transformations in H such that $\{T_n\}$ converges to the identity transformation I in H, but for any subsequence $\{T_{k(n)}\}$ of $\{T_n\} \lim T_{k(n)}x$ does not exist for any x in H.

Proof. Let K be the circle group and $(K, \mathfrak{M}, \lambda)$ the normalized Lebesgue measure space. We define a sequence $\{S_n\}$ of invertible λ -measure-preserving transformations in K as follows:

$$\begin{split} S_1 \exp(it) &= \begin{cases} \exp(i(t+\pi)) & \text{if } 0 \leq t < \pi/2 \text{ or } \pi \leq t < \pi + \pi/2 \\ \exp(it) & \text{if } \pi/2 \leq t < \pi \text{ or } \pi + \pi/2 \leq t < 2\pi, \end{cases} \\ S_2 \exp(it) &= \begin{cases} \exp(it) & \text{if } 0 \leq t < \pi/2 \text{ or } \pi \leq t < \pi + \pi/2 \\ \exp(i(t+\pi)) & \text{if } \pi/2 \leq t < \pi \text{ or } \pi + \pi/2 \leq t < 2\pi, \end{cases} \\ S_3 \exp(it) &= \begin{cases} \exp(i(t+\pi)) & \text{if } 0 \leq t < \pi/4 \text{ or } \pi \leq t < \pi + \pi/4 \\ \exp(it) & \text{if } \pi/4 \leq t < \pi \text{ or } \pi + \pi/4 \leq t < 2\pi, \end{cases} \\ S_4 \exp(it) &= \begin{cases} \exp(it) & \text{if } 0 \leq t < \pi/4, \pi/2 \leq t < \pi + \pi/4 \\ \text{or } \pi + \pi/2 \leq t < 2\pi \\ \exp(i(t+\pi)) & \text{if } \pi/4 \leq t < \pi/2 \text{ or } \pi + \pi/4 \leq t < \pi + \pi/2, \end{cases} \end{split}$$

and so on.

It is obvious that $\{S_n\}$ converges to the identity transformation in Kin measure, but $\lim_{n\to\infty} S_n x$ does not exist for any x in K. Let \mathfrak{S} be the set of all subsequences $\{k(n)\}$ of $\{n\}$. We note that the cardinal number of \mathfrak{S} is equal to $2^{\mathfrak{n}_0}$. We consider the product measure space $(\otimes K_{\{k(n)\}}, \otimes \mathfrak{M}_{\{k(n)\}}, \otimes \lambda_{\{k(n)\}})$ of $(K_{\{k(n)\}}, \mathfrak{M}_{\{k(n)\}}, \lambda_{\{k(n)\}})$, where $(K_{\{k(n)\}}, \mathfrak{M}_{\{k(n)\}}, \lambda_{\{k(n)\}})$ $= (K, \mathfrak{M}, \lambda)$ for all $\{k(n)\} \in \mathfrak{S}$. Then the compact abelian group $H \equiv \otimes K_{\{k(n)\}}$ is not metrizable. In fact there is no countable open basis at the identity of H, and so H is not metrizable.

For each $\{k(n)\} \in \mathfrak{S}$ we define a sequence $\{S_j^{[k(n)]}\}$ of invertible λ measure-preserving transformations as follows: $S_j^{[k(n)]} = S_1$ if $j \leq k(1)$, and $S_j^{[k(n)]} = S_m$ if $k(m-1) < j \leq k(m)$. For each $j(j=1, 2, 3, \cdots)$, let T_j be a transformation of H onto H defined by

$$T_{j}x = (S_{j}^{\{k(n)\}}x_{\{k(n)\}})_{\{k(n)\}}$$
(9)

for $x = (x_{\{k(n)\}})_{\{k(n)\}} \in \mathfrak{S}$. Then $\{T_j\}$ is a sequence of invertible $\otimes \lambda_{\{k(n)\}}$

measure-preserving transformations in H.

On the other hand, by Lemma $3 \otimes \lambda_{\{k(n)\}}$ is the restriction of the normalized Haar measure m H to the σ -field $\otimes \mathfrak{M}_{\{k(n)\}}$ and the outer measure induced by $\otimes \lambda_{\{k(n)\}}$ coincides with the outer measure induced by m. Thus $\{T_j\}$ is a sequence of invertible *m*-measure-preserving transformations in H. Let V be a neighborhood of the identity of H in the form $\otimes V_{\{k(n)\}}$, where $V_{\{k(n)\}}$ is an open neighborhood of the identity of the identity of $K_{\{k(n)\}}$, but it coincides with $K_{\{k(n)\}}$ except for finitely many coordinates $\{k(n)\} \in \mathfrak{S}$. Let I be the identity transformation in H. Since $\{S_j\}$ converges to the identity transformation in K, it is easily seen that

$$\lim_{j \to \infty} m\{x \in H \,|\, (T_j x) (I x)^{-1} \notin V\} = 0.$$
(10)

This implies that $\{T_j\}$ converges to I in measure (in reference to the definition of convergence in measure in general case, see [2, Definition 1]). By virtue of [2, Theorem 1], $\{T_j\}$ converges to I weakly. But from the construction of $\{T_j\}$, for any subsequence $\{T_{k(j)}\}$ of $\{T_j\}$ lim $T_{k(j)}x$ does not exist for any x in H. The proof is completed.

Acknowledgment. I would like to thank Professor Shigeru Tsurumi who read an earlier version of this paper and made some helpful suggestions.

References

- E. Hewitt and K. A. Ross: Abstract Harmonic Analysis, Vol. 1. Berlin (1963).
- [2] F. Papangelou: On weak convergence and convergence in measure of transformations in topological measure spaces. J. London Math. Soc., 43, 521-526 (1968).