21. On the Type of an Associative H-space

By Shōji Ochial
Nara University of Education (Comm. by Kinjirô Kunugi, m. J. A., Feb. 12, 1969)

1. Introduction. Let X be an H-space. If the rational cohomology of X is an exterior algebra on a finite number of odd dimensional generators, then the number of such generators is called the rank of X.

The type of X is the dimensions in which the generators occur. In this paper, we obtain by the analogous method as in [3], [4], some result on an associative H-space of rank n.

Theorem. Let X be a connected associative H-space of rank n with $H_{*}(X ; Z)$ finitely generated as an abelian group. Let a be the generator of the rational cohomology $H^{*}(X ; Q)$. If the degree of the generator a is $2 i-1$, then we have

$$
\varphi(i) \leqq n,
$$

where φ is the Euler function.
I with to express my hearty thanks to Larry Smith for suggesting this problem and giving me many valuable advices, and to Professors K. Morita and R. Nakagawa for their criticism and encouragement.
2. Some results on unstable polyalgebras.

Definition. A polynomial algebra B over the $\bmod p$ Steenrod algebra A_{p} (p : prime) is called an unstable polyalgebra over A_{p}, if it is an algebra that is a left A_{p}-module satisfying
(1) $P_{p}^{k} x=0 \quad$ if $2 k>\operatorname{deg} x$
(2) $\quad P_{p}^{k} x=x^{p} \quad$ if $2 k=\operatorname{deg} x$
where we denote $S q^{2 m}$ by P_{2}^{m}. This terminology is found in Larry Smith's paper [4].

The next theorem is fundamental in this paper.
Theorem (A. Clark [1]). Let B be an algebra over the Steenrod algebra A_{p} and suppose that B is a polynomial algebra over Z_{p} on generators of even degree. If $2 m$ is the degree of a generator of B, then B has a generator in some degree $2 n$ for which $n \equiv 1-p \bmod m$, or else $m \equiv 0 \bmod p$.

Lemma 2.1. Let B be an unstable polyalgebra over $A_{p}(p: o d d$ prime) on a finite number of even dimensional generators $x_{1}, \cdots, x_{i}, \cdots$ \cdots, x_{n} where deg $x_{i}=2 j_{i}$ and $p>j_{i}>1$.

Then the integer j_{i} satisfies one of the following conditions (A)

(A) | $j_{1} \equiv 1-p$ | $\bmod j_{i}$ |
| :---: | :---: |
| $j_{2} \equiv 1-p$ | $\bmod j_{i}$ |
| \vdots | |
| $j_{i} \equiv 1-p$ | $\bmod j_{i}$ |
| \vdots | |
| $j_{n} \equiv 1-p$ | $\bmod j_{i}$ |

Proof. Since $j_{i} \not \equiv 0 \bmod p$, it follows from A. Clark's Theorem that one of the conditions is clearly satisfied.
3. Some results from number theory. We need the following classical theorem in number theory.

Theorem (Dirichlet). Every arithmetic series whose initial term and difference are relatively prime contains an infinite number of primes.

Lemma 3.1. Let $j_{1}, \cdots, j_{i}, \cdots, j_{n}$ and n be positive integers and let φ be the Euler function.

If $\varphi\left(j_{i}\right) \geqq n+1$, then there is an integer s satisfying the following conditions.

$$
\begin{array}{cc}
s \neq 1-j_{1} & \bmod j_{i} \\
s \neq 1-j_{2} & \bmod j_{i} \\
\vdots \\
s \neq 1-j_{n} & \bmod j_{i} \\
\left(s, j_{i}\right)=1 &
\end{array}
$$

Proof. Since $\varphi\left(j_{i}\right) \geqq n+1$, there are relatively different $\left(\bmod j_{i}\right)$ integers $s_{1}, s_{2}, \cdots, s_{n+1}$
such that

$$
\begin{gathered}
\left(j_{i}, s_{1}\right)=1 \\
\left(j_{i}, s_{2}\right)=1 \\
\vdots \\
\left(j_{i}, s_{n+1}\right)=1
\end{gathered}
$$

Let $1-j_{k_{1}}, \cdots, 1-j_{k_{m}}, m \leqq n$ be the totality of $1-j_{\nu}, \nu=1,2, \cdots, n$ which are relatively prime to j_{i}. Then there exists an s_{j} which is not congruent $\left(\bmod j_{i}\right)$ to $1-j_{k_{\lambda}}$ for any λ with $1 \leqq \lambda \leqq m$. Such an s_{j} is the required integer s. This concludes the proof.

Proposition 3.2. Let $j_{1}, j_{2}, \cdots, j_{i}, \cdots, j_{n}$ be positive integers. If for all sufficiently large primes p, one of the following conditions (A) are satisfied, then $\varphi\left(j_{i}\right) \leqq n$.
(A) $p \equiv 1-j_{2} \quad \bmod j_{i}$
$p \equiv 1-j_{n} \quad \bmod j_{i}$
Proof. Suppose $\varphi\left(j_{i}\right) \geqq n+1$. By Lemma 3.1 there is an integer s such that

$$
\begin{array}{cc}
s \neq 1-j_{1} & \bmod j_{i} \\
s \neq 1-j_{2} & \bmod j_{i} \\
\vdots & \\
s \neq 1-j_{n} & \bmod j_{i} \\
\left(s, j_{i}\right)=1 . &
\end{array}
$$

By the Dirichlet's Theorem, the arithmetic series $\left\{a_{k} \mid a_{k}=s+j_{i} \cdot k\right\}$ contains infinitely many primes. Suppose that p is such a prime. Then we get $p \equiv s \bmod j_{i}$

Therefore

$$
\begin{array}{cc}
p \neq 1-j_{1} & \bmod j_{i} \\
p \neq 1-j_{2} & \bmod j_{i} \\
\vdots & \\
p \neq 1-j_{n} & \bmod j_{i}
\end{array}
$$

This concludes the proof.
4. Proof of the main theorem. Let X be a connected associative H-space of rank n with $H_{*}(X ; Z)$ finitely generated as an abelian group. Then it follows from Hopf's Theorem that

$$
H^{*}(X ; Q)=E\left[x_{1}, \cdots, x_{n}\right]
$$

where deg x_{i} is odd.
Since X is an associative H-space, X has the classifying space $B X$, as has been shown by Dold and Lashof [2]. By the generalized Borel's transgression theorem, we get for all sufficiently large prime p,

$$
H^{*}\left(B X ; Z_{p}\right)=P\left[y_{1}, \cdots, y_{i}, \cdots, y_{n}\right]
$$

where $\operatorname{deg} y_{i}=\operatorname{deg} x_{i}+1=2 j_{i}$.
Apply Lemma 2.1 and Proposition 3.2 to this polyalgebra, and we get

$$
\varphi\left(j_{i}\right) \leqq n
$$

This concludes the proof.

References

[1] A. Clark: On π_{3} of finite dimensional H-spaces. Ann. of Math., 78, 193196 (1963).
[2] A. Dold and R. K. Lashof: Principal quasifibrations and fibre homotopy equivalence of bundles. Illinois J. of Math., 3, 285-305 (1959).
[3] S. Ochiai: On the type of an associative H-space of rank three. Proc. Japan Acad., 44, 811-815 (1968).*)
[4] L. Smith: On the type of an associative H-space of rank two (to appear in Tōhoku Math. J.).
[5] N. E. Steenrod and D. B. A. Epstein: Cohomology operations. Ann. of Math. Study No. 50. Princeton N. J.

[^0]
[^0]: *) Remarks on my previous paper [3]: (1) I mentioned at the footnote on page 811 that the non-existence of H-spaces with types $(3,5,11)$ and $(3,11,11)$ was proved by using the Steenrod operation P^{2}. But, later that proof was found to be incomplete. (2) In Theorem 2.1 on page 812, insert "with even dimensional generators" between "polyalgebra" and "over".

