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1. Introduction. To consider conjugate functions E.C. Tichmarsh
introduced, in [1], the (Q)-integral. We say that f(x) is (Q)-integrable

in [a, b] when there exists lim [o[f(X)]ndx and it is finite, and the limit
da

is denoted by (Q) .1 f(x)dx. But the (Q)-integral does not possess the

additive property o integral. A.N. Kolmogorov showed, in [2], that
if (Q)-integrable unctions f(x)(i=1, 2) satisfies the condition"
nmes (x ;I f(x) >= n)- o(1) (i- 1, 2), for any a (i- 1, 2), crf(x) is also

(Q)-integrable and (Q)|af(x)dx- a(Q) |f(x)dx. If a (Q)-
da

integrable unction f(x) satisfies the above condition, we say that f(x)
is (A)-integrable in [a, b], and give a value of the (A)-integral by that
of the (Q)-integral. A Lebesgue integrable unction is (A)-integrable
and both integrals have the same value. But there exists a function
which is not (A)-integrable, for example g(x)- (- 1)n/x where 1/n
+lx<=l/n (n-l, 2, ...) and g(0)--0. K. Kunugi has proposed in [3]
the notion o the generalized (E.R.)-integral by which this g(x) is
integrable in [0, 1].

In this paper, we state a generalization of the (A)-integral.

2. The generalization of (A)-integral. In this paper, consider
only real valued unctions which are measurable and almost every-
where finite in [0, 1] and denote the set of these unctions by [0, 1].
Let ={h(x)}n=l,... be a sequence of non-negative Lebesgue integrable
functions tending to infinite almost everywhere in [0, 1].

Definition of the (A, )-integral. We say that f(x) of :[0, 1] is
(A, )-integrable in [0, 1] if f(x) satisfies following [a] and [b]"

[a] hn(x)dx o(1) for any c> O,
J(x;

[b] lira f [f(x)]dx exists and is finite, where
do

[f(X)]-- f(x) for If(x)l<h(x) and -0 for If(x)l>=h(x).
The value of the integral is given by this limit and we denote it

by (A,).[1o f(x)dx.

Especially put hn(x)--n u(x), where u(x) is positive and Lebesgue
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integrable, we can replace [a] by following [a’]" [a’] n| u(x)dx
J(x; IS(x)I>nu (x))

=o(1). The generalization in this orm has already been gotten by
H. Yamagata [4].

The (A, )-integral has a few properties which the (A)-integral
has.

Proposition 1. The (A, )-integral possess the additive property
of integral.

Proposition 2. Let {fn(X)} be a sequence of (A, )-integrable

satisfying (1) fl(x)<- f2(x)<=.., and (2) (A, ) .[0 fn(x)dxfunctions are

uniformly bounded, and put lim fn(x)-f(x), then f(x) is (A, )-

and (A, )[" f(x)dx--lim (A, )I-lfn(x)dx.integrable
Jo do

We introduce some notations as follows.
(1) When there are two integrals, X integral and Y integral, if

any X integrable function is Y integrable and both integrals have the
same value, we write (X)<(Y), and if the converse is also true, we
write (X)-- (Y).

(2) p(x)/ q(x) =_ max (p(x), q(x)), p(x) A q(x) rain (p(x), q(x)).
When ()--{h)(x)}=,%... (i- 1, 2),

(3) (1) V()=_{h)(x)/ h()(x)}, (1) A()_{h(l)(x) Ah()}
and c() +c()={ch + ()c2n } where cO (i-1 2).

Proposition :. Denote the Lebesgue integral by L, we have
(L) <(A, 2) for any .

A non-negative (A,)-integrable /unction isProposition 4.
Lebesgue integrable.

Proposition 5.
<(n,).

Proposition 6.
Proposition 7.

If is a sub-sequence of , we have (A,)

For any positive number c, (A, )=(A, c2).
When f(x) is (A, (i))-integrable (i= 1, 2), if it is

(A, 2 (1) + (2))-ntegrable, it is (A, (1)/())-integrable. The converse is

true. And (A,(> +2()) .[0 f(x)dx-(A,()/()) .[0 f(x)dx.
When h(1)(x) and h()(x) are both non-negative and Lebesgue

integrable, we have following ormulae,

(1) f h()(x)/ h()(x)dx h()(x)dx
(x;if(x)l:>h(1)(x)k/k(2)(x)) (x;]f(x)l_h(2)(x))

h()(x)Ah()(x)dx< h(i)dx,
(x;ij,(x)l_h()(x)Ah(2)(x)) (x;l,f(x)l_h(2)(x))

(x;if(x)i_k(t) (x)) (x;].f(x)l:>h(1) (x) k/h (2) (x))

+ I" h(1)(x) Ah()(x)dx,
J(x;/f(x) I> h (1) (x) A (2) (x))
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+ o [f(x)]()()dx.
Then, we have the ollowing proposition 8.

Proposition 8. (1) If a function of [0, 1] satisfies the condition
[a] with respect to ( (i=1,2), it also satisfies [a] with respect to
()V() and ()A(2). And the converse is true. (2) If f(x) is
integrable in the three senses of (A, ())-, (A,()), (A,()V(:)) and
(A,()A())-integral, it is integrable in the other sense, and

(A, (i)) f(x)dx- (A, (1)V (2)) 1 f(x)dx + (A, (1)(2))1 f(x)dx.
J0 j0 j0

In the special case, when {I} is a sequence of measurable sets satisfying
(1) II... [0, 1] and (2) lim rues In=l, h(x)=n in In and --0 in I.
In this case, we call the (A, )-integral (A, In)-integral.

Theorem 1. If f(x) is a function of [0, 1], there exists a
sequence {In} of measurable sets which satisfies above two con-
ditions and (1) n mes{(x;]f(x)]an)I}-o(1) for any 0.

(2) lira " [f(X)]ndx exists. If this limit is finite, f(x) is

integrable in [0, 1].
Proof. At first, take a sequence (Ca} of monotone decreasing

positive numbers tending to zero. For e, there is a measurable set

I in which f(x) is bounded, and rues I>1-e. Put m- [max f(x)] )

Lx Ix*

+1 and i-I. For e, we get I as same as I, and put m

construct {m} and {I}, and let {} be a sequenee of positive numbers
monotone increasing to infinite and -1. Nor any >0, () be the

smallest such tha [,]>, f(z)l< in I when >(). Pu

[m], when > (), rues {(z f()m) fi I}-0 since >m.
When Nm<., put I-], mines {(z lf()lm)OI}--O for

m>. We easily ge a sub-sequence {m} of integers such that

limj [f()]gz exists. When m<<m.l, ut I--I’ then

I [f(X)]mpdx-- f [f(X)]ndx(<nmes ((x; ,f(x),>mp)/p}-O for
lp I

m)(). It is obvious that nmes {(x;f(x)]an)In}-O(1) for
a>0. (Q.E.D.)

Corollary. If f(x) and g(x) are in [0, 1], there is a sequence

1) [x] is the integral part ot x.
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{In} of measurable sets fulfiling the theorem with respect to f(x) and
g(x).

If f(x) is in [0, 1] and not Lebesgue integrable, we have a
problem, for given c, whether we can construct an (A, In)-integral by

which f(x) is integrable and (A, In) .[10 f(x)dx-c. This problem is not

perfectly solved, but we get the following theorem.

Theorem 2. If f(x) of [0, 1] satisfies .[: f+(x)dx-.[: f-(x)dx2)

and c is given, there is {h(x)} such that f(x) is (A,)-integrable

and (A, )0 f(x)dx-c.

Proof. By the proof of Theorem 1, we have two sequences {I}
and {I}, of measurable sets and integers re(a) for a>0, that satisfy

limI-I and limit-l, mes{(x;f+(x)am)I}-O and mes{(x;f-(x)

a)I;}-0 2or m>m(a) and lim [f(x)]dx exists. Put the

limit c’. When c’ is finite, put d-c--c’ and suppose d0, then there
are an integer m and a measurable set J satisfying J,I, and

[ [f-(x)],dx-d=[ [f-(x)],dx. Take m so large that

--Jm and I(, ,,) m [f-(x)]dx-I,, [f-(x)]dx-d. Continue

this process, we can construct a sequence {J}. When m n<m+, we

define In--I (IJ) then lira [ [f(x)]dx-c’--d-c. When c’ is

infinite, we suppose c’- and c0. There is an integer N satisfying

t en we

[f-(x)]_dx<satis2ying
;-

Since ;[f-(z)]_dX--_z_ [f-(x)]gxformm(1),thereisa

of measurable sets satisfyingsequence
I+

=[g-o [f-(z)]d and I_]I. If <N, h(z)-O and if N,

h(z)- in IXI_, =m_ in I_ and -0 otherwise. hen for

sueiently large , [ h(z)gzN rues {(;
(x; f(x)lan (x))

2) f/(x) is the non-negative part of f(x) and f-(x)--f/(x)--f(x).
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+m_ mes {(x; f-(x)>=am_)I_}-O and 0 [f(x)]dx-c.
(Q.E.D.)

Corollary. If a function is integrable by any (A, In)-integral, it
is Lebesgue integrable.

We get a theorem which is an extension of the Lebesgue’s con-
vergence theorem.

Theorem 3. When a sequence {f(x)} of (A,)-integrable

functions converges to f(x) in measure, if (1)[ h(x)dx
J(x; fm(X)akn(X))

=0(1) iormlg i mO of eaeh >0 d (2) lira
ndO

=(A,) J: f(x)dx uniformly in mO, then f(x) is (A, )-integrable

and (A, ): f(x)dx-lim (A,)f(x)dx.
j0 j0

D.E. Menshov showed, in [5], that for any function of [0,1]
there exists a trigonometric series which converges to the unction
almost everywhere. So we need to consider the relation between
Fourier coefficients and integrals. Let {(X)}n=,,... be an orthonormal
system in [0, 1]. And we assume that 0(x)l and for any and m
there is n satisfying (X)(X)--n(X) almost everywhere.

Theorem 4. If CnOn(X)--f() in measure, for any
=0

h(x)g=o(1) iofml in mO ad f
S(x)n(x)dx- o(1) uniformly in m n, where S(x) c(x), then

CorollarT. e(z)-Oi measure ag
=0 (x; Sm(X)h(x))

o(1) uniformly in m n, then c- O.
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