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37. On Generalized (A)-integrals. I

By Kaoru YONEDA
University of Osaka Prefecture

(Comm. by Kinjiré KUNUGI, M. J. A., March 12, 1969)

1. Introduction. To consider conjugate functions E.C. Tichmarsh
introduced, in [1], the (Q)-integral. We say that f(«x) is (Q)-integrable

in [a, b] when there exists lim b[ f(@)],dx and it is finite, and the limit

n—o Ja

is denoted by (Q) r f(x)dz. But the (Q)-integral does not possess the

additive property of integral. A.N. Kolmogorov showed, in [2], that
if (Q)-integrable functions f,(x) (¢=1, 2) satisfies the condition:
nmes (x;] f;(x)| =n)=0(1) (=1, 2), for any «, (1=1, 2), 2.a. fi(x) is also

«»m%mmmm@ﬁkmmmngu@ﬁmmd I a (Q-

integrable function f(x) satisfies the above condition, we say that f(x)
is (A)-integrable in [a, b], and give a value of the (A)-integral by that
of the (Q)-integral. A Lebesgue integrable function is (A)-integrable
and both integrals have the same value. But there exists a function
which is not (A)-integrable, for example g(x)=(—1)*/x where 1/n
+1<2=1/n (n=1,2, --.) and g(0)=0. K. Kunugi has proposed in [3]
the notion of the generalized (E.R.)-integral by which this g(x) is
integrable in [0, 1].

In this paper, we state a generalization of the (A)-integral.

2. The generalization of (A)-integral. In this paper, consider
only real valued functions which are measurable and almost every-
where finite in [0, 1] and denote the set of these functions by [0, 1].
Let $={h,(¥)}s-1.... be a sequence of non-negative Lebesgue integrable
functions tending to infinite almost everywhere in [0, 1].

Definition of the (A, Q)-integral. We say that f(x) of IM[O, 1] is
(A, 9)-integrable in [0, 1] if f(x) satisfies following [a] and [b]:

[a] j h(x)dx=0(1) for any a>0,

(z31f(x) | Z2ahy ()
1

[6]1 lim| [f(2)],,dx exists and is finite, where
0

n—oco

[f @)1, = f(@) for | f(@)|<h,(x) and =0 for | f(x)|=h.(®).

The value of the integral is given by this limit and we denote it
1
WM@WJ@M‘

Especially put ki, (x)=n u(x), where u(x) is positive and Lebesgue
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integrable, we can replace [a] by following [a']: [a'] nf . w(x)dx
(z;] f(x) Z2nu(x))

=o0(1). The generalization in this form has already been gotten by
H. Yamagata [4].

The (A, §)-integral has a few properties which the (A)-integral
has.

Proposition 1. The (A, ©)-integral possess the additive property
of integral.

Proposition 2. Let {f.(x)} be a sequence of (A, )-integrabdle

functions satisfying 1) fi@)< fL(w)=<--- and (2) (A, ) J; fo(@)dx are
uniformly bounded, and put lim f,(x)=f(x), then f(x) is (A, )-

integrable and (A, §) j ' f@dz=lim (A, §) j ' @) da.

We introduce some notations as follows.

(1) When there are two integrals, X integral and Y integral, if
any X integrable function is Y integrable and both integrals have the
same value, we write (X)(Y), and if the converse is also true, we
write (X)=(Y).

2 p@)Vq(@)=max (p(x), 9()), p(x) A\ q(x) =min (p(x), q(x)).
When $9= (O @)}ers.... (=1, 2),

3) $VOO={rL @)V P (2)}, QPNHD ={rP(x) NLP}
and ¢.9P + c,H® ={c,h® + c,h?} where ¢,>0 (i=1, 2).

Proposition 3. Denote the Lebesgue integral by L, we have
(L) A(A, 9) for any .

Proposition 4. A non-negative (A, H)-integrable function is
Lebesgue integrable.

Proposition 5. If §, is a sub-sequence of ©, we have (A, D)
(A, 9.

Proposition 6. For any positive number c, (A, 9)=(A, cD).

Proposition 7. When f(x) is (A, $®)-integradble (i=1,2), if it is
(A, HP +H?)-ntegrable, it is (A, OV H?)-integrable. The converse is

true. And (A, 9O + ) jl F@dz=(A, H©VH) j’ F@)da.
0 0
When A®(x) and h®(x) are both non-negative and Lebesgue
integrable, we have following formulae,
RO\ RO (2)dz < 3" j RO (2)da
[

(@31 £ ()12 D (x))

hO(@) AR (@)da < 3" j hOdz,
%

(@3] f () 120 @ (x))

W |
(@31 £ (x)12h D (2) VR @) ()

j(x;lf(w)lzn@) @) AR (x))

@ f h@(x)dng RO )\ h®(x)da
T J (@] f @iz (@) (@31 £ (@) 2h W (2) VA D (2))

h®(x) NR® (2)d,

j(w;lf(x)lzh(l) (@) AR (x))
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3 ; ﬂ [f(@)],wde= ﬂ [f@) ], ovroda

1
+ ‘[0 [f(@)], o rnede.

Then, we have the following proposition 8.

Proposition 8. (1) If a function of MI0, 1] satisfies the condition
[al with respect to H© (i=1,2), it also satisfies [a] with respect to
QOVH® and HPNH®. And the converse is true. (2) If f(x) is
integrable in the three senses of (A, HP)-, (A, H?), (A, 9PV H®)- and
(A, QONYD)-integral, it is integrable in the other sense, and

@A, ) j F@)de = (A, 9OV H®) j F@de + A, POAHD) j fx)da.

In the special case, when {I,} is a sequence of measurable sets satisfying
M I1,cI, - <[0,1] and (2) limmes I,=1, h,(x)=nin I, and =0inI¢.

n—o00

In this case, we call the (A, §)-integral (A, I,)-integral.

Theorem 1. If f(x) is a function of MIO, 1], there exists a
sequence {I,} of measurable sets which satisfies above two con-
ditions and (1) nmmes{(z;|f(@)|=an)Nl,}=0Q1) for any a>0.
(2) lim | [f(@)].dx exists. If this limit is finite, f(x) is (A, I,)-

integrable in [0, 1].

Proof. At first, take a sequence {¢,} of monotone decreasing
positive numbers tending to zero. For ¢, there is a measurable set

I¥ in which f(x) is bounded, and mes I*>1—¢,. Putm¥= [ma}f | f(x) I]n
+1 and I,=I*. For ¢, we get I¥ as same as I¥, ;;3 put m¥
= max {m;‘“, [22}5 | f () |:| +1} and I,=I,UIf. In the same manner,
construct {m}¥} and {I,}, and let {«,} be a sequence of positive numbers
monotone increasing to infinite and o,=1. For any a>0, k(«) be the
smallest s such that [as]>%, | f(@)|<m¥ in I, when k>k(a). Put m,

=[a,mi], when k> k(a), mes {(z;|f(x)|=am,) NI}=0 since am, >m,.
When m,<m<y,,, put I,=1I,, mmes{(x;|f@)|=am)NI,}=0 for
M>My,y. We easily get a sub-sequence {m,} of integers such that

lim ) [f(oc)]mﬁdx exists. When m,<n<m,,,, put I,,:I;W then
mp

p—ooo

L, [f(x)]mpdx— L [f(x)],dx ' snmes{(z;|f(®)|=m,) ﬂI;p}:O for
mp>pm,m). It is obvious that nmes{(z;|f(@)|=an)NI,}=0Q1) for
a>0. (Q.E.D.)

Corollary. If f(x) and g(x) are in N[0, 11, there is a sequence

1) [«] is the integral part of «.
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{I,} of measurable sets fulfiling the theorem with respect to f(x) and
9(x).

If f(x) is in M[0,1] and not Lebesgue integrable, we have a
problem, for given ¢, whether we can construct an (A, I,)-integral by

which f(«) is integrable and (A, I,) jl f(x)de=c. This problem is not
0
perfectly solved, but we get the following theorem.

Theorem 2. If f(x) of MO, 1] satisfies ﬁ Fr@)de= j ; F-(@)da®
= oo and cis given, thereis H={h,(x)} such that f(x) is (A, H)-integrable
and (A, ©) jl F@)dae=c.

Proof. By the proof of Theorem 1, we have two sequences {I;}
and {I,}, of measurable sets and integers m(a) for a >0, that satisfy
limI}=1 and limI, =1, mes{(x; f*(®)=am) NI;}=0 and mes{(x; f~(x)

m—soo m—oo

>am) NI;}=0 for m>m(«) and lim _Lf@)],dx exists. Put the

m—oo I,mnlm

limit ¢/.  When ¢’ is finite, put d=c—¢’ and suppose d>0, then there
are an integer m, and a measurable set J,, satisfying J,,CI, and

J‘I_ [ f‘(x)]mldx—dzL_ [f~(@)],dx. Take m, so large that

_ [f~(®],,dx>d, there is a measurable set J,, satisfying I, \I,

mﬁ\I’ml

DJ,., and J(z;,\r,;)\% Lf-(@)]n,de= j |2 " @ldo—d.  Continue

this process, we can construct a sequence {J,,,}. When m,<n<m,,,, we
define I,=1I} N(;\J,,) then 11_1:2 . [f],de=c'—d=c. When ¢ is
infinite, we suppose ¢’=oco0 and ¢>0. There is an integer N satisfying
j L+ ()], dac> I Lf-(2)],dz for m= N then we can find a sequence {m,)

sat1sfy1ng I [ i €) dx<j

L (@)]y i — e < f [ @layda.
mg

mp—1 N+k

SmceI Lf= (@), - 1olac_j Lf~(@)]ndx for m;=m(1), there is a

mp—1 mp—~1

sequence {I,} of measurable sets satisfying I @)y de—c
N+k

_j [f (@), dox and I, _ 1CImkgI‘ If n<N, h,(x)=0andif n=N,

n(x) nin G\, ., =m,_y in I, and =0 otherwise. Then for

mn~N

sufficiently large n, J ho()dr<nmes {(x; ff(@=an)NI}}
(w31 f(x)=ahn(z))

2) f*(x) is the non-negative part of f(x) and f-(x)=s*(x)—f(x).
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Mgy mes (@5 F-(@) = am,_y) N1 _}=0 and j: Lf@)],, da=c.

(Q.E.D.)
Corollary. If a function is integrable by any (A, I,)-integral, it
18 Lebesgue integrable.
We get a theorem which is an extension of the Lebesgue’s con-
vergence theorem.
Theorem 3. When a sequence {f,(x)} of (A, $)-integrable

functions converges to f(x) in measure, if (l)I h,(x)dx
(@31 fp (B2 @by ()

=o0(1) uniformly in m=0 for each a>0 and (2) lim 1[]“,,L(oc)]hnolcc
0

7= 0,

=(A, D) ﬁ Fn@dx uniformly in m=0, then f(x) is (A, 9)-integrable

and (A, ©) f@dz=lim A, ©) j Fn(@da.

m—roo

D.E. Menshov showed, in [5], that for any function of [0, 1]
there exists a trigonometric series which converges to the function
almost everywhere. So we need to consider the relation between
Fourier coefficients and integrals. Let {¢,(%)},., ,.... be an orthonormal
system in [0,1]. And we assume that @(x)=1 and for any I and m
there is n satisfying ¢,(2)¢,.(x)=¢,(x) almost everywhere.

Theorem 4. If f]cn¢n(x)= f(x) in measure, for any a>0
n=0

J‘ hiy(x)dr=0(1) uniformly in m=0 and I
(23S () Zahp(r))

X Sn (@)@ (x)dx=0(1) uniformly in m=n, where S,,(x)= % cdi(x), then
k=0

J@)p(x) is (A, H)-integradble and c,=(A, H) I: J@)@,(x)dzx.

(2318 ()2 hp(e))

Corollary. fjo Caba(@) =0 in measure andj Sn(@)n(x)de

(2;[Sp(x)2hg(x))
=0o(1) uniformly in m=n, then ¢,=0.
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