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1. Introduction. 1.0. Our purpose is to construct the limit
spaces (i.e. generalized topological spaces [2] p. 273) J, J and Jse,
defined on the set J shown in 1.2 which characterize the generalized
double weak limits (itself or with the restriction on sign) expressed by
filter. These spaces J, J,, Jsep and another space J also show the
difference among the conditions which characterize the (topological)
limit space.

1,1o Let E be a set. Let vx (by v) be the set o filters defined
on the set E corresponding to x e E. We show here the following
properties of vx (L1).-(L4) [2] p. 273, [3] pp. 451-452.

(L) vxoranyxeEis a / ideal. Here / ideal is the set of
filters satisfying the ollowing conditions (i) (ii);

) 1 .=-- (F [J G F e (), G e (2)) e rx or any 1, 2 e ’X,

(ii) all filters finer than e rx (i.e. ()(1)holds) are also the
elements of vx. Here (), ()and ()are the sets consisting of the
elements of , , and respectively.

Hereafter let [x] denote the filter with the base (x}, and let [(x)]
denote the weakest filter in vx (if it exists).
(L) z’x for any x e E contains [x].
(L) rx or any x e E contains [(x)].
(L) Corresponding to a V e [(x)] there exists an element W(V) of
[(x)] such that V e [(y)] holds or all y e W.

If v satisfies (L) (L2), (E, v) is called a limit space [2] p. 273. If
v satisfies (L1)N(L3), (E, v) is called a principal ideal limit space. If v
satisfies (L)--(L4), (E, v) is called a topological space. Limit space is
L space by M. Frechet described by the filter. The following (T1) (T)
are the axioms o separation in limit space. (T)[x] vy holds or any
two distinct elements x, y in E. (T)vxvy--. holds for any two
distinct elements x, y in E.

Let (E, v) be a limit space. If e vx, we call that tends to x e E
by v, and that x is the limit from by v. If [{x;i>n};xeE]
becomes the base of a filter e vx, we say that {x} tends to x by v.
Let A be a set in E. fi (the closure o A) consists of the points x e E
such that there exists a filter e vx satisfying F A 4:0 for any F e ().
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The purpose of the theory on limit space is to construct the limit on
E independently of the set theory.

1.2. Let Un e L_,). If lim fupdx is finite and definite for any
d

fixed (?(x)e B (B; the space of real valued uniformly almost periodic
functions of x, where x is a real variable --x + ), we say that
this L_,)-function’s sequence {Un} has double weak limit [4] p. 139
denoted by d.w.B, lim Un. Let J denote the set consisting of the real

valued L -function’s sequences with double weak limit.

Let [{fn};lim[fdx-O for v(x)eB]J. Since is a

vector space (Lemma I-3), the equivalent class of {f} e J is defined
by [{gn};{f--g} e , {g} e J]. The set consisting of the equivalent
classes in J is denoted by ]. 0 and denote the classes and regard-
ed as the point in ]. Let L be the set consisting of the equivalent
classes fi (or f) [{gn} {f--gn} e , f e L_,>, {gn} e J]. fi (or f) can be
regarded as the function contained in L_,), and L can be regarded
as L_,). The corresponding convergence in ] to the one by original
double weak limit is the one for the sequence {Un} with the terms con-
tained in L to u e ]. Namely d.w.B, limun(=U) becomes ] u

K cl[{Un Un e L}]. Furthermore, this convergence d.w.B, lim Un--U

can be extended to the one for the sequence with the terms contained
in ] to an element in ]. D. Judge defines the original double weak
convergence (for the sequence with the terms in L_,)) in order to
construct a generalized Hilbert space containing and by the
meaning of sequence [5] p. 378 which is the direct product L(-,)

{afii(x--s)}@ H {bt expitx} with the norm [IEa,e,

+ g(x- s) + b, exp (itx)ll- =lal + al + lb], where
{e; ,-1, 2,... } is a complete orthonormal system in L_,).
Here r is a functional (by Y. Takahashi and by H. Umezawa) satisfy-

ing [r(x)(x)dx-lim 1/(2T).[’ @(x)dx or any fixed e B.
J T 3-T

1.. Let’s show here the equivalent relation in J by using 0 in
2. Example I-1 in 3 shows the A ideal not to be limit space and

not relating to double weak limit. The weakest filter base of x(x e E)
in Example I-1 is the family of the sets constructed by the elimination
of x from the elements of a given filter (# [x]).

2. The equivalent relation of the sequences in J.
Let J denote the space consisting of the real valued L_,)-fuhc-

tion’s sequences with double-weak limit, and 0 denote the zero class

[{f} lim._ ffdx-O for veB, fn L_,)].
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Lemma 1.1. If e B (the space of real valued uniformly almost
periodic functions), then 2, IPl, / =-(+ 11)/2 and (?-= ((?-11)/2 are
also contained in B.

Proof. Since (? e B is bounded and continuous [6] p. 86, 2,
(?/, - are bounded and continuous.
Let l(e)be the number dependent on (? associated to e)0 satisfying
I..(x / T)-- (x)l e for a given T e [a, a +/(e)] for any real a. Since
the above numbers for ?", I? I, (?

/ and - associated to e) 0 become
l..(e)-l(e/{2 Max (1, sup I(?l)}) and Iil()-l/(e)-l-(e)-l(e), then
I1, (f

/ and - are also contained in B [6] p. 93.
Lemma 1.2. If {fn}, {gn} are the elements in J, there exists a con-

stant KO (independent of ) satisfying I.[fn.g.qdx K sup,q, for
any p e B.

Proof. Sincelis the element of B sequences t[fdxtandl.lgdxt
areconvergent. Then]f.gn.dx] lf, Ignl l(fldx { f.

/g. lop .dx}/2< lf,dx/gdx}/2.sup ’9’ K sup lop, holds for

any e B, where K is a constant independent of (? and n.
Let {f} and {g} be the elements in J. {fn}+___{gn}[fn+__gn} and

k{fn}--{kfn}.
Lemma I.:. 0 becomes a vector space contained in J.
Proof. (i) Since 9 eB holds or any (?eB (Lemma I-l),

li_m.lf:.dx-O holds or anye B provided that lim[f.dx-O holds

Jor anye B. Since [fdx-[f:(p/dx+[f-dx holds, lim [fpdx
=0 holds for any (? e B provided that lim [f+/-dx-O hold for any

eB. Then, if and only if lim [fdx-O holds Jor any (feB,

lim[f+/-dx=O holds for any (? e B.

(ii) If --_li[fdx- lim [gFdx-O holds for any qe B, 1.i_m[f+/-dx
=imIgdx-O holds for any (feB. Since OS(fn-}-gn)2(fl+dx
< 2 [f,+dx +gp+dx] and 0> (f, + gn)2D-dX 2 [fD-dx
d- gq-dx] hold, lim (f d- g.)",’dx-O Then lLm(f d- g,)",dx

=0 holds. Namely if {f,}, {gn} e O, {f, + gn} e O.

(iii) Furthermore, if lmfglx-O, m(/f)ggz-im
0 holds.
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(iv) Then 0 becomes a vector space contained in J.
Lemma 1,4. Let {fn}, {gn} and {hn} be the elements in J, and let, and be [(u} {fn--Un} e O, {Un} e J], [(u} {g--u} e O, {u} e J]

and [{Un} {h--u} e O, {Un} e J] respectively.
(i) {fn} G I, (ii) If {an} G , {fn} . (iii) If {an} G and {h} e hold,

Proof. (i) holds evidently. (ii) If {f--gn} e O, {g--fn} e 0 holds.
Then (ii) holds. (iii) If {f--g.} e 0 and {g,--hn} G O, (fn--hn} G 0 holds
from Lemma I-3. Then (iii) holds.

Classify J by 0 and construct the.space of the classes J. Namely
the class (or ) corresponding to {fn} e J is [{gn} {f,--g} e O, {gn}
e J]. denotes the class regarded as the point in J.

Definition 1,1. Let L denote the space (the equivalent class

o {fn}); lim [f2dx-ffqdx or v? e B, where f, fe L_,)/.
A

Let L denote the space [ (the equivalent class of {f}); f
----f, f e L_,)].

Let L denote the linear space [ (the equivalent class of {f}) f
=f e L_,)] corresponding to L_,) set-theoretically.

L, L, L.J holds. Let f(x) e L_,) satisfying
Since the equivalent class of {gn}--{f, --f, f,’" "} is contained

in L Li, LL L holds.
Let {fn} be {f, f, ...}. {f} and {gn} are containedin J. But, since

{fn}- {gn}--{2f(x), 0, 2f(x), 0, } holds, {f}+ {gn} is not contained
in J. Then J (consequently J) is not a linear space. But J and J
contain the various linear subspaces. For example, OJ and L.J
are linear subspaees in J and J. If lim f.g.ogx for given two

{f}, {g} J becomes finite and definite for any g e B (other than the
inequality in the result of Lemma I-.), {f}__ {g} e J holds.

Lemma 1.5. Let {f}, {g} be the elemet i J, ad let {hl}, {h}
be the elements in O. If a pair {fn}, {gn}( e J) has a definite and finite
limit :im [fn.g.dx for any e B, lim [(f,+ h(:)).(g,+h()).dx

lim [f. gnqdx holds for any :p e B.

Proof.

f h qdx /fdx h()" dx,lh(l) g (fdx f dx fgdx

and [h(!).h(:).fdxl/l’h()’dx.[h()"qdx hold :for any (feb :from

Schwarz inequality. Since is also an element in B or any ? e B

( emma  17""
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=0 holds for any e B, and lim |(fn-{-hl)).(gn- h()).dx

f.gn.dx any eholds or B.

Corollary. lim [(X +h))dx- lim [fpdx holds for any e B
J

and for any given {fn} e J and {h1)} e O.
Furthermore, it follows rom this Lemma I-5 that the inner prod-

uct (, ) of two elements , fi e J equivalent to {f}, {gn} e J respectively

(with the definite and finite limlf.gn.pdx :for any e B/ can be de-
\ J /

fined by lira f.g, lgz for any given {f} e and any given {} e .
Because it determines unique limit (if it exists) independently of the
choice of two elements {f} and {g} contained in f and respectively.
he orthonormal sequences in J by (:, g) can be also defined.

3. A ideal not to be a limit space. Let , be two filters
contained in vx (x e E) relating to a limit space (E, v).

Lemma 1.6. 1 A 2 consists of the elements in () (.).
Proof. If K is an element of ( A .), K=_F [J G holds by F e ()

and Ge(). Since FGF and FtJGG hold, FtJGe(I) A()
holds rom (F) in the filter’s definition [1] p. 32. Namely K e
() A (2). If K e () A (2), K e (l) and K e (2), Since K=K U K, K
is the element of ( A ).

Lemma 1.7. Let vx={ 0(x)} be the set of filters constructed
from a fixed filter o(X). If any element of o(X) contains x e E, vx
satisfies (L) (L2) and (L3) shown in 1, 1.2.

Proof. If >0(x) and 20(x) hold (i.e. (), (2)(0(x))),
A 20(x) also holds from Lemma I-6. Then vx satisfies the con-

dition of limit space (L) (i). Since satisfying > for a given e vx
is contained in vx (from vx’s definition), (L) (ii) evidently holds.

Since any element of 0(x) contains x, [x] > 0(x) also holds. Then
vx satisfies (L2). Since 0(x) is the weakest filter in vx, vx also
satisfies (L3).

Example 1.1. Let (E, v) be a limit space such that there exists
a filter e vx not equal to [x]. Let {A.-x} be the family of (nonvoid)
sets constructed from a filter -{A} e vx in (E, v) not equal to [x].
Since(A-x)A(A--x)-(AA--x) e {A-x} holds from A, A e (),
{A--x} becomes the base of a filter. Let (-) be the filter with the
base {A-x}, and x be the set of filters {; >-)}.

Theorem 1.1. The above space (E, ) satisfies (L1), but it does
not satisfy (L2).
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Proof. (i) Let () and () be two filters finer than the one with

the base {A,-x}, where -(A,} e vx (not equal to Ix]). Since (" ()
is also finer than the one with the base (A,-x}, (" () e Vx holds.

(ii) If is the filter satisfying< by e Vx, e x holds, for

> >/(- x) holds.
Here (-) is the filter with the base {A,--x} by --{A.} e rx (:[x]).
Then (E, ) satisfies (L1) from the above (i) (ii). Since ([x])((-x))
(i.e. [x] -)), [x] e x, and (E, V) does not satisfy (L2).
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