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1. On normality of a family of pure-dimensional analytic sets in
a domain of C, the following theorem of Oka [4] is well-known.

Theorem of Oka. Let F be a family of pure-dimensional analyt-
ic sets in a domain of Cn. Then F is analytically normal if and only
if the volumes of elements of F are locally uniformly bounded.

This theorem was proved by T. Nishino [3] in the case of two
variables. The proof of this theorem in the case of n variables was
given in our former paper (Watanabe [6]).

On the other hand, the concept of geometric convergence was in-
troduced by E. Bishop as follows.

Let {S} be a sequence of closed subsets in a domain of C. It is
said that {S} converges geometrically to a closed set S if for any
compact set K, {SfK} is a convergent sequence in Comp(K)) and
S- lim(SK) where K ranges over the compact sets. Further

K

Bishop [1] proved the following.
Theorem of Bishop. Let {S} be a sequence of purely 2-dimen-

sional analytic sets in a domain D of C. Suppose that {S,} converges
geometrically to a closed set S in D. If the volumes of S are uni-
formly bounded, then S is also an analytic set in D.

We shall prove that in the above theorem of Bishop, S is also
purely 2-dimensional if S is not empty.

2. Let D=A{[wIR} be a domain of C+, where A is a do-
main of (z,..., z)-space C(z). Then the following proposition is
well-known (for example, Fujita [2]).

Proposition. Let S be a purely 2-dimensional analytic set in D.
Assume that S is contained in A {[w[(R0} for some positive number
RoaR. Then the projection of S on A is also purely 2-dimensional
analytic set in A.
It follows from this:

Corollary. Let D=A{[wl[ <R}...{Iw[ <R} be a domain

of C/" and S be a purely 2-dimensional analytic set in D. If S is
contained in A {IWll <R0} {[wl <R0} for some positive number
RoaR, then ?I-(S, r, A) is an analytic cover, where zr is a projection.

1) For a definition of Comp (K), see [5].



244 C. WATANABE [Vol. 45,

Now let us prove the following
Theorem. Let {S} be a sequence of purely 2-dimensional analyt-

ic sets in a domain of Cn. If {S} converges geometrically to a non-
empty analytic set S, then the local dimension dimpS at each point p e S
is at least .

Proof. Suppose that there holds dim S=k2 or some point
p e S. For simplicity we may assume that p is the origin. Ater a
suitable change of the coordinate system, we can choose (n-k) pseudo-
polynomials P/(z’; ), P/(z’; )..., P(z’; ), whose coefficients are
holomorphic unctions of z’-(z,...,z), and positive numbers
(i- 1, 2, ., n) such that

(i) S US*-{(z’,z/, .,z) P(z’ z)-O, 1-k+l, .,n}or
a neighbourhood U of the origin.

(ii) the roots of P(z’; )-0 are all contained in the disc
(1-- k + 1, ., n) for z’- (z, ., z) with [z <_ e (]= 1, 2, ., k). For
sufficiently small positive numbers r, p, the polydisc 9-A {[z/[ (p}

{[Zn p} is a relatively compact subset of U, where A-
<r, ]--1,2, ., k}.

We may assume that for z’e A, the roots o P(z’; )-0 are all

contained in the disc Il--p’. Then S* is an analytic set in

and S* /2cA { z/ < p’} { Z < p’}. Since {S,} converges

.geometrically to S, it follows that lim(Stg)cS 9, and it is easily

seen that for a positive number p" (p’ p"(p) there is a positive inte-
ger 0 such that S 9 is contained in A { z/ ( P"} {
or >__ 0. On the other hand, denoting A {I z/ (P} {Iz p}
by A, we have 9--A{[z/[(p} X{[Zn[p} and so
{Iz/ P"} {Iz P"}. But from the corollary of Proposi-

tion, the projection of S,9 on the (z,z,...,z)-space is A. This
contradicts the fact that S /2 is contained in A { z +1 P"}

X {[Zn[ p"}. Q.E.D.
On the other hand, from the estimation of the Hausdorff measure

and the relation between the volume and the Hausdorff measure, the
dimension of S is at most 2 if a sequence of purely 2-dimensional an-
alytic sets converges geometrically to an analytic set S and if the 22-
dimensional volumes of S are uniformly bounded ([5]). Therefore we
have from our theorem, the following

Corollary. In the theorem of Bishop, if the limit set S is not
empty, then S is also purely 2-dimensional.

). Here we shall give some properties of geometric and analytic
convergence.

Let {S} be a sequence of closed sets in a domain D of Cn. Sup-
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pose that (S} converges geometrically to a closed set S in D. Since

lim(SK,)lim(SK/), we have Slim lim(SK) for every se-

quence {K} of compact sets such that KK,/..., and D= K.
On the other hand, we have Slim lim (S K) from the very defini-

tion, and hence S= lim lim (S K). The converse is not necessarily

true as the following example shows.
xample. Let D= {(Zl, z) e C z-1 1, ]z 1} be a domain

of C and (Sn} be a sequence of analytic sets such that S,- (z, z) e D

z= ,S- (,)eD;=l+
S.- (z, z) e D z-g + + + hen sinee S K,

g <1and S+K- for the compact se K-- (,)eD; -- =,
1}I1 {S} does not converge geometrically. Bu it is obvious

that lira lira (S K)= {(z, ) e D 1} for every exhaustion of D by

compact sets K. However if lim (S K) exists for suNeiently large, then there is a subsequenee {S} of {S} which converges geometric-
ally to a closed set S* and lira (S K)= lira (S K,) for sueiently

large , and hence we have S* lira lira (S K)- lira lira (S K,)
for sueiently large .

Summing up the above result, we have
Proposition 1. I {S} eoefge geometfiell to eloped et S

i D, the it holg tha S= lira lira (S K) o eer eqeee {K} ol

S= lira lim (S K,) eit, the S i eloeg there i beqeee

o {S} hieh eoee geometfieall to S.
Nex we consider he ease of analytic convergence of a sequence

of ure-dimensional analytic sets.
Suppose that a sequence {S} of pure-dimensional analytic sets in

a domain D of C converges analytically to S. We shall show that

S K-lira (S K) for a compact set K such that S .
Let S- {;p(,’)<s}, where p(,’) means the Nuelid dis-

z’S
tance between z and z’. If SK-S()K for a sequence of
positive integers vv..., then we can choose a sequence of points

p e SK-S( K. Since K is compact it may be assumed that

pp. From the assumption p is not contained in S. On the other

2) For a definition of analytic convergence, see [2], [6].
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hand, rom the definition of analytic convergence there are a neigh-
bourhood U of p and holomorphic functions f(, k=1,2, ..., in U
such that SU-{ze U; f((z)-O, k=l, 2,...,1}.

Moreover, since f((z) converges uniformly to a holomorphic
unction f((z) in U, f(z) also converges uniformly to f((z)in U.
We have f(p)l--0 since p is not contained in S. But since
f([)(z) converges uniformly to f()(z), it holds ]f()(p)
--f()(p)l+ f()(p)--f([)(p)l or sufficiently large ]. This is a
contradiction and hence we have SK-S() K-;5 for sufficiently
large ].

Thus there is a positive integer 0 depending only on e such that
S KS() VI K or >= 0. This means that {S 1 K} converges to
SK in Comp(K). Thus we have

Proposition 2. If a sequence (S} of pure-dimensional analytic
sets converges analytically to S, then it holds that S-lira lira (S 1 K)

for every sequence {K} of compact sets such that K.K./..., and
D-- [_J K.

Remark. Even if lim(SK) exists, the sheet numbers of S
need not be bounded. Hence we can not always choose a subsequence
of (S} which converges analytically. Such an example was given in
former paper ([6]).
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