# 53. On Ranked Spaces and Linearity. II 

By Masako Washihara

Kyoto Industrial University
(Comm. by Kinjirô Kunugi, m. J. A., April 12, 1969)

In this note we shall give a definition of linear ranked spaces, axioms of which are weaker than those given in [2]. Sometimes this definition is more convenient to use, in particular, to study for the notions connected with fundamental sequences of neighbourhoods. Hereafter we shall treat only ranked spaces with indicator $\omega_{0}[1]$. Throughout this note, $x, y, \cdots$ will denote points of a ranked space, $\mathfrak{B}_{n}(x)$ the system of neighbourhoods of $x$ with rank $n,\left\{u_{n}(x)\right\},\left\{v_{n}(x)\right\}$, $\cdots$ fundamental sequences of neighbourhoods with respect to $x$.
§ 1. Definition of linear ranked spaces. Let $E$ be a ranked space, and also a linear space over real or complex field. We call $E$ a linear ranked space, if linear operations in $E$ are continuous in the following sense:
(I) For any $\left\{u_{n}(x)\right\}$ and $\left\{v_{n}(y)\right\}$, there is a $\left\{w_{n}(x+y)\right\}$ such that $u_{n}(x)+v_{n}(y) \subseteq w_{n}(x+y)$.
(II) For any $\left\{u_{n}(x)\right\}$ and $\left\{\lambda_{n}\right\}$ with $\lim \lambda_{n}=\lambda$, there is a $\left\{v_{n}(\lambda x)\right\}$ such that $\lambda_{n} u_{n}(x) \subseteq v_{n}(\lambda x)$.
(I) implies the continuity of addition; if $\left\{\lim x_{n}\right\} \ni x$ and $\left\{\lim y_{n}\right\} \ni y$, then $\left\{\lim \left(x_{n}+y_{n}\right)\right\} \ni x+y$, and (II), the continuity of scalar multiplication ; if $\left\{\lim x_{n}\right\} \ni x$ and $\lim \lambda_{n}=\lambda$, then $\left\{\lim \lambda_{n} x_{n}\right\} \ni \lambda x$.
$\S 2$. The neighbourhoods of zero. Let $E$ be a linear ranked space. We will denote the system of neighbourhoods of 0 with rank $n$ by $\mathfrak{B}_{n}$, and fundamental sequences with respect to 0 by $\left\{U_{n}\right\},\left\{V_{n}\right\}, \cdots$. Obviously $\left\{\mathfrak{B}_{n}\right\}$ satisfies the axioms (A), (B), (a), (b) in [2].

Furthermore, from (I), (II), we get following properties.
$\left(\mathrm{RL}_{1}\right)$ For any $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$, there is a $\left\{W_{n}\right\}$ such that $U_{n}+V_{n}$ $\subseteq W_{n}$.
$\left(\mathrm{RL}_{2}\right)$ (i) For any $\left\{U_{n}\right\}$ and $\lambda$, there is a $\left\{V_{n}\right\}$ such that $\lambda U_{n}$ $\subseteq V_{n}$.
(ii) For any $x$ and $\left\{\lambda_{n}\right\}$ with $\lim \lambda_{n}=0$, there is a $\left\{V_{n}\right\}$ such that $\lambda_{n} x \in V_{n}$.
(iii) For any $\left\{U_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ with $\lim \lambda_{n}=0$, there is a $\left\{V_{n}\right\}$ such that $\lambda_{n} U_{n} \subseteq V_{n}$.
$\left(\mathrm{RL}_{3}\right)$ Let $x$ be any point in $E$. For any $\left\{U_{n}\right\}$ there is a $\left\{v_{n}(x)\right\}$ such that $x+U_{n} \subseteq v_{n}(x)$, and, conversely, for any $\left\{u_{n}(x)\right\}$ there is a $\left\{V_{n}\right\}$ such that $u_{n}(x) \subseteq x+V_{n}$.

Proof. ( $\mathrm{RL}_{1}$ ), ( $\mathrm{RL}_{2}$ ) (i), (iii) are immediate consequences of (I), (II), respectively, putting $x=y=0, \lambda_{n}=\lambda$, or $\lambda=0$. As for ( $\mathrm{RL}_{2}$ ) (ii), taking some $\left\{u_{n}(x)\right\}$ and applying (II) for $\lambda=0$, there is a $\left\{V_{n}\right\}$ such that $\lambda_{n} u_{n}(x) \subseteq V_{n}$. Since $x \in u_{n}(x)$, we have $\lambda_{n} x \in V_{n}$. Now, we shall show $\left(\mathrm{RL}_{3}\right)$. Take any $\left\{\boldsymbol{U}_{n}\right\}$ and some $\left\{u_{n}(x)\right\}$. From (I), there is a $\left\{v_{n}(x)\right\}$ such that $u_{n}(x)+U_{n} \subseteq v_{n}(x)$, and therefore $x+U_{n} \subseteq v_{n}(x)$. Conversely, for any $\left\{u_{n}(x)\right\}$, taking some $\left\{v_{n}(-x)\right\}$, there is a $\left\{V_{n}\right\}$ such that $u_{n}(x)+v_{n}(-x)$ $\subseteq V_{n}$, and therefore $-x+u_{n}(x) \subseteq V_{n}$, i.e., $u_{n}(x) \subseteq x+V_{n}$. Q.E.D.

The three conditions above are not only necessary, but sufficient for a linear space which is also a ranked space to be a linear ranked space. In other words, (I), (II) follow from ( $\mathrm{RL}_{1}$ ), ( $\mathrm{RL}_{2}$ ), ( $\mathrm{RL}_{3}$ ). It is clear that $\left(\mathrm{RL}_{2}\right)$ (iii) can be omitted if every $V$ in $\mathfrak{B}$ is circled.

Proof. (I) Let $\left\{u_{n}(x)\right\},\left\{v_{n}(y)\right\}$ be any fundamental sequences. From $\left(\mathrm{RL}_{3}\right)$, there are $\left\{U_{n}\right\},\left\{V_{n}\right\}$ such that $u_{n}(x) \subseteq x+U_{n}, v_{n}(y) \subseteq y+V_{n}$. Applying ( $\mathrm{RL}_{1}$ ), there is a $\left\{W_{n}\right\}$ such that $U_{n}+V_{n} \subseteq W_{n}$. From $\left(\mathrm{RL}_{3}\right)$ again, there is a $\left\{w_{n}(x+y)\right\}$ such that $x+y+W_{n} \subseteq w_{n}(x+y)$. Thus, $u_{n}(x)+v_{n}(y) \subseteq\left(x+U_{n}\right)+\left(y+V_{n}\right) \subseteq x+y+W_{n} \subseteq w_{n}(x+y)$.
(II) Take any $\left\{u_{n}(x)\right\}$ and $\left\{\lambda_{n}\right\}$ with $\lim \lambda_{n}=\lambda$. From $\left(\mathrm{RL}_{3}\right)$, there is a $\left\{U_{n}\right\}$ such that $u_{n}(x) \subseteq x+U_{n}$. Putting $\mu_{n}=\lambda_{n}-\lambda$, we have $\lim \mu_{n}=0$, and therefore by $\left(\mathrm{RL}_{2}\right)$ (i), (ii), (iii), respectively, there are $\left\{V_{n}^{1}\right\},\left\{V_{n}^{2}\right\},\left\{V_{n}^{3}\right\}$ such that $\lambda U_{n} \subseteq V_{n}^{1}, \mu_{n} x \in V_{n}^{2}, \mu_{n} U_{n} \subseteq V_{n}^{3}$. Then, $\lambda_{n} u_{n}(x) \subseteq\left(\lambda+\mu_{n}\right)\left(x+U_{n}\right)$ $\subseteq \lambda x+\lambda U_{n}+\mu_{n} x+\mu_{n} U_{n} \subseteq \lambda x+V_{n}^{1}+V_{n}^{2}+V_{n}^{3}$. Applying ( $\mathrm{RL}_{1}$ ), there is a $\left\{V_{n}\right\}$ such that $V_{n}^{1}+V_{n}^{2}+V_{n}^{3} \subseteq V_{n}$. Finally, from ( $\mathrm{RL}_{3}$ ) again, there is a $\left\{v_{n}(\lambda x)\right\}$ such that $\lambda x+V_{n} \subseteq v_{n}(\lambda x)$. Thus, we have a $\left\{v_{n}(\lambda x)\right\}$ such that $\lambda_{n} u_{n}(x) \subseteq v_{n}(\lambda x)$. Q.E.D.

In many important examples it seems natural to take $\{x+V$; $\left.V \in \mathfrak{B}_{n}\right\}$ as $\mathfrak{B}_{n}(x)$. If we do so, $\left(\mathrm{RL}_{3}\right)$ is automatically fulfilled. Thus, when in a linear space $E$, families $\mathfrak{B}_{n}$ are given and satisfy axioms (A), (B), (a), (b), ( $\mathrm{RL}_{1}$ ), $\mathrm{RL}_{2}$ ), $E$ becomes a linear ranked space taking $\mathfrak{B}_{n}(x)$ as above.

It is easily seen that axioms (1), (2), (3) in [2] are sufficient conditions for $\left(\mathrm{RL}_{1}\right)\left(\mathrm{RL}_{2}\right)$ (i), (ii), respectively, when every $V$ in $\mathfrak{B}$ is circled.
§3. Examples. As remarked above, all examples in [2] are linear ranked spaces. We shall give an example which is not a linear ranked space in earlier sense.

Let $\Phi$ be the union space of countably normed spaces $\Phi^{(p)}(p=1,2$, $\cdots$..) [5], i.e. $\Phi=\bigcup_{p=1}^{\infty} \Phi^{(p)}$, where
(1) $\Phi^{(p)} \subseteq \Phi^{(p+1)}$
(2) the systems $\left\{\left\|\|_{n}^{(p)}\right\}_{n=1,2,}, \ldots{ }^{1)}\right.$ and $\left\{\left\|\|_{n}^{(p+1)}\right\}_{n=1,2, \ldots}, \ldots\right.$ are equivalent in $\Phi^{(p)}$.

[^0]Put $v(n, p ; 0)=\left\{\varphi \in \Phi^{(p)} ;\|\varphi\|_{n}^{(p)}<\frac{1}{n}\right\}, \mathfrak{B}_{n}=\{v(n, p ; 0) ; p=1,2, \cdots\}$ for $n \geq 1$, and $\mathfrak{B}_{0}=\{\Phi\}$. It is clear that, if $m \geq n$, then $v(m, p ; 0)$ $\subseteq v(n, p ; 0)$. Moreover it can be shown that, if $v(m, p ; 0) \subseteq v(n, q ; 0)$, then necessarily $p \leq q$.

Obviously axioms (A), (a), (b) are satisfied. To prove (B), we take any $U=v(m, p ; 0)$ and $V=v(n, q ; 0)$. We may assume $p \leq q$. From the hypothesis (2), there are $m^{\prime}$ and $M$ such that $\|\varphi\|_{n}^{(q)} \leq M\|\varphi\|_{m^{\prime}}^{(p)}$ for $\varphi \in \Phi^{(p)}$. Taking sufficient large $m^{\prime \prime}$, we have $m^{\prime \prime} \geq m$ and $\|\varphi\|_{n}^{(q)}$ $\leq \frac{m^{\prime \prime}}{n}\|\varphi\|_{m^{\prime \prime}}^{(p)}$ for $\varphi \in \Phi^{(p)}$. Now, $W=v\left(m^{\prime \prime}, p ; 0\right) \subseteq U \cap V$.

Thus, taking $\mathfrak{B}_{n}(\varphi)=\left\{\varphi+V ; V \in \mathfrak{B}_{n}\right\}, \Phi$ becomes a ranked space. We shall show that convergence of sequences in $\Phi$ is equivalent to usual one; we have $\left\{\lim \varphi_{i}\right\} \ni 0$ if and only if all $\varphi_{i}$ belong to $\Phi^{(p)}$ for some fixed $p$, and $\left\{\varphi_{i}\right\}$ converges to 0 in $\Phi^{(p)}$, i.e. $\lim \left\|\varphi_{i}\right\|_{n}^{(p)}=0$ for each $n$. If $\left\{\lim \varphi_{i}\right\} \ni 0$, there is a $\left\{U_{i}\right\}$ such that $\varphi_{i} \in U_{i}^{i}$. Let $U_{i}=v\left(n_{i}, p_{i} ; 0\right)$. Since $U_{i} \supseteq U_{i+1}$, we have $p_{i} \geq p_{i+1}$, and therefore, for some $i_{0}$, $p_{i}=p\left(=\min _{i} . p_{i}\right)$ when $i \geq i_{0}$. Since $n_{i} \uparrow \infty$, we have $\left\|\varphi_{i}\right\|_{n}^{(p)} \rightarrow 0$ for each $n$. Thus $\varphi_{i}$ belongs to $\Phi^{(p)}$ for $i \geq i_{0}$ and converges to 0 in $\Phi^{(p)}$. From the hypothesis (2), $\left\{\varphi_{i}\right\}_{i \geq i_{0}}$ converges to 0 in $\Phi^{\left(p_{1}\right)}$, too. Obviously all $\varphi_{i}$ belong to $\Phi^{\left(p_{1}\right)}$, and converges to 0 in $\Phi^{\left(p_{1}\right)}$.

On the other hand, if for some fixed $p, \varphi_{i} \in \Phi^{(p)}$ and $\varphi_{i}$ converges to 0 in $\Phi^{(p)}$, we can choose an increasing sequence of positive integers, $\left\{i_{n}\right\}$, such that $\left\|\varphi_{i}\right\|_{n}^{(p)}<\frac{1}{n}$ for $i \geq i_{n}$. Putting $U_{i}=v(n, p ; 0)$ for $i$ with $i_{n} \leq i<i_{n+1}$, and $U_{i}=\Phi$ for $i<i_{1}$, we get a fundamental sequence $\left\{U_{i}\right\}$ such that $\varphi_{i} \in \boldsymbol{U}_{i}$.

Now, we shall prove $\left(R L_{1}\right)$. Let $\left\{U_{i}\right\},\left\{V_{i}\right\}$ be fundamental sequences, where $U_{i}=v\left(l_{i}, p_{i} ; 0\right), V_{i}=v\left(m_{i}, q_{i} ; 0\right)$. We must make a $\left\{W_{i}\right\}$ such that $U_{i}+V_{i} \subseteq W_{i}$. As shown before, there are $p, q, N$ such that $p_{i}=p$ and $q_{i}=q$ for $i \geq N$. We can assume $N=1$. If $p=q$, putting $W_{i}=v\left(n_{i}, p ; 0\right)$, where $n_{i}=\min .\left(\left[\frac{l_{i}}{2}\right],\left[\frac{m_{i}}{2}\right]\right)$, we have $U_{i}+V_{i} \subseteq W_{i}$. When $p \neq q$, we may suppose $p>q$. Since systems $\left\{\left\|\|_{n}^{(p)}\right\}\right.$ and $\left\{\left\|\|_{n}^{(q)}\right\}\right.$ are equivalent in $\Phi^{(q)}$ and $m_{i} \uparrow \infty$ there exist $i_{1}$ and $C$ such that $\frac{m_{i}}{2}\|\varphi\|_{m_{i}}^{(q)}$ $\geq\|\varphi\|_{1}^{(p)}$ for any $\varphi \in \Phi^{(q)}$, and for $i \geq i_{1}$. Thus, when $i \geq i_{1},\|\varphi\|_{1}^{(p)}<\frac{1}{2}$ for any $\varphi \in V_{i}$. Repeating this process, we obtain an increasing sequence $\left\{i_{\nu}\right\}$ such that, when $i \geq i_{\nu},\|\varphi\|_{\nu}^{(p)}<\frac{1}{2 \nu}$ for $\varphi \in V_{i}$. Moreover, we can assume $l_{i} \geq 2 \nu$ for $i \geq i_{\nu}$. Now, putting $W_{i}=v(\nu, p ; 0)$ for $i$ with
$i_{\nu} \leq i<i_{\nu+1}$, and $W_{i}=\Phi$ for $i<i_{1}$, we have $U_{i}+V_{i} \subseteq W_{i}$.
Clearly every $V$ in $\mathfrak{B}$ is circled. The axioms (2) and (3) in [2] hold, putting $\psi(\lambda, \mu)=\left[\frac{\lambda}{\mu}\right]$. Hence $\left(\mathrm{RL}_{2}\right)$ is fulfilled.

Finally we remark that $\Phi$ may not satisfy the axiom (1) in [2]; suppose that the inequalities $\|\varphi\|_{1}^{(p)} \geq p \cdot\|\varphi\|_{p}^{(1)}(p=1,2, \cdots)$ hold for every $\varphi \in \Phi^{(1)} .{ }^{2)} \quad$ Then, for any $l$ and $m$ there are $U$ and $V$, respectively in $\mathfrak{B}_{l}$ and $\mathfrak{B}_{m}$ such that no $W$ in $\mathfrak{B}_{n}, n \geq 1$, can include $U+V$. In fact, let $U=v(l, 1 ; 0), V=v(m, l+1 ; 0)$, and suppose $U+V \subseteq W$, where $W=v(n, p ; 0), n \geq 1$. Since $V \subseteq W, p \geq l+1$. For any $\varphi \in W,\|\varphi\|_{n}^{(p)}<\frac{1}{n}$, a fortiori $\|\varphi\|_{1}^{(p)}<1$. If we take a $\varphi \in \Phi^{(1)}$ such that $\|\varphi\|_{1}^{(p)}=1$, clearly $\varphi \notin W$. On the other hand, $1=\|\varphi\|_{1}^{(p)} \geq p\|\varphi\|_{p}^{(1)} \geq(l+1)\|\varphi\|_{l+1}^{(1)} \geq(l+1)\|\varphi\|_{l}^{(1)}$, therefore $\|\varphi\|_{i}^{(1)} \leq \frac{1}{l+1}<\frac{1}{l}$, i.e. $\varphi \in U$. Hence $U \nsubseteq W$. This contradicts the fact that $U+V \subseteq W$.
§4. Bounded sets in linear ranked spaces. We already gave a definition of bounded sets in linear ranked spaces in earlier sense in [3], and another definition in [4]. Now, let $E$ be a linear ranked space in new sense. We use Definition 2 in [4]: $A$ subset $B$ in $E$ is called bounded if there is a fundamental sequence $\left\{V_{n}\right\}$, any member of which absorbs $B$. The study for bounded sets in [4] can be applied to our case. For example, from ( $\mathrm{RL}_{1}$ ), it follows that any finite union and finite sum of bounded sets are also bounded, from ( $\mathrm{RL}_{2}$ ) (i), that any scalar multiple of bounded set is bounded, and from ( $\mathrm{RL}_{3}$ ) (ii), that any one point set is bounded.

We give a sufficient condition for the property that every convergent sequence is bounded. It is as follows: For any $\left\{U_{n}\right\}$ there is a $\left\{V_{n}\right\}$ such that every $V_{n}$ is circled and for some $N, \bigcup_{\lambda} \lambda V_{n}=\bigcup_{\lambda} \lambda V_{N}$ for $n \geq N$. The proof is trivial and omitted. The union of countably normed spaces $\Phi$ in $\S 3$ evidently satisfies this condition.

Now, we shall show that, in $\Phi$, boundedness is equivalent to usual one; $B$ is bounded in our sense, if and only if $B$ is included in some $\Phi^{(p)}$ and $\sup _{\varphi \in B}\|\varphi\|_{n}^{(p)}<\infty$ for each $n$. In fact, suppose that, for some $\left\{V_{i}\right\}$, where $V_{i}=v\left(n_{i}, p_{i} ; 0\right)$, every $V_{i}$ absorbs $B$, and let $p=\min . p_{i}$. Clearly, $B \subset \Phi^{(p)}$ and $\sup _{\varphi \in B}\|\varphi\|_{n}^{(p)}<\infty$ for each $n$. On the other hand if $B \subset \Phi^{(p)}$ and $\sup _{\varphi \in B}\|\varphi\|_{n}^{\left(p^{\varphi \in}<B\right.}<\infty$ for each $n$, then putting $U_{n}=v(n, p ; 0)$, we get a $\left\{U_{n}\right\}$ any member of which absorbs $B$.
2) This is possible, when we omit some finite members of $\left\{\left\|\|_{n}^{(p)}\right\}\right.$, and multiply by some positive numbers. In each $\Phi^{(p)}$, the new system of norms is equivalent to initial one, and therefore convergence of sequence in $\Phi$ is unaltered.

Finally we remark that first definition of boundedness in [3] (Definition 1 in [4]) is not always equivalent to usual one. To prove this, we put $\Phi=\mathscr{D}, \Phi^{(p)}=\mathscr{D}_{p}=\{\varphi \in \mathscr{D} ; \operatorname{car} \varphi \subseteq[-p, p]\}$ and define the systems of norms as follows. Let $\|\varphi\|_{n}=\max _{0 \leq j \leq n-1} \sup _{x}\left|\varphi^{(j)}(x)\right|$. In $\Phi^{(p)}$, let $|\varphi|_{1}^{(p)}=\sup _{\|\psi\|_{p \leq 1}}|\varphi(\psi)|^{3)}, \cdots|\varphi|_{p}^{(p)}=\sup _{\|\varphi\|_{1} \leq 1}|\varphi(\psi)|,|\varphi|_{p+n}^{(p)}=\|\varphi\|_{n}(n=1,2, \cdots)$. Obviously two systems $\left\{\left\|\|_{n}\right\}\right.$ and $\left\{\left|\left.\right|_{n} ^{(p)}\right\}\right.$ are equivalent in $\Phi^{(p)}$, and therefore convergence of sequences in $\Phi$ coincides with usual one. In this space $\Phi, V=v(2,1 ; 0)=\left\{\varphi \in \mathscr{D}_{1} ;|\varphi|_{2}^{(1)}=\sup _{x}|\varphi(x)|<\frac{1}{2}\right\}$ is bounded by Definition 1 ; for any $n$ there is a $U$ in $\mathfrak{B}_{n}$ which absorbs $V$. In fact, let $U=v(n, n-1 ; 0)$. Since $|\varphi|_{n}^{(n-1)}=\|\varphi\|_{1}, U=\left\{\varphi \in \mathscr{D}_{n-1} ; \sup _{x}|\varphi(x)|\right.$ $\left.<\frac{1}{n}\right\}$. Hence $\frac{2}{n} V \subseteq U$. It is clear that this set is not bounded in usual sense.

## References

[1] K. Kunugi: Sur la méthode des espaces rangés. I, II. Proc. Japan Acad., 42, 318-322, 549-554 (1966).
[2] M. Washihara: On ranked spaces and linearity. Proc. Japan Acad., 43, 584-589 (1967).
[3] -: The continuity and the boundedness of linear functionals on linear ranked spaces. Proc. Japan Acad., 43, 590-593 (1967).
[4] M. Washihara and Y. Yoshida: Remarks on bounded sets in linear ranked spaces. Proc. Japan Acad., 44, 73-76 (1968).
[5] I. M. Gelfand and G. E. Shilov: Generalized Functions, Vol. 2 (1958).

[^1]
[^0]:    1) $\left\{\left\|\|_{n}^{(p)}\right\}_{n=1,2}, \cdots\right.$ will denote the system of norms in $\Phi^{(p)}$. We assume that $\left\|\left\|_{1}^{(p)} \leq\right\|\right\|_{2}^{(p)} \leq \cdots$.
[^1]:    3) $\varphi(\psi)=\int_{-\infty}^{\infty} \varphi(x) \psi(x) d x \quad$ where $\quad \varphi, \psi \in \mathscr{D}$.
