53. On Ranked Spaces and Linearity. II

By Masako WASHIHARA Kyoto Industrial University

(Comm. by Kinjirô KUNUGI, M. J. A., April 12, 1969)

In this note we shall give a definition of linear ranked spaces, axioms of which are weaker than those given in [2]. Sometimes this definition is more convenient to use, in particular, to study for the notions connected with fundamental sequences of neighbourhoods. Hereafter we shall treat only ranked spaces with indicator $\omega_0[1]$. Throughout this note, x, y, \cdots will denote points of a ranked space, $\mathfrak{B}_n(x)$ the system of neighbourhoods of x with rank n, $\{u_n(x)\}, \{v_n(x)\},$ \cdots fundamental sequences of neighbourhoods with respect to x.

§1. Definition of linear ranked spaces. Let E be a ranked space, and also a linear space over real or complex field. We call E a linear ranked space, if linear operations in E are continuous in the following sense:

- (I) For any $\{u_n(x)\}$ and $\{v_n(y)\}$, there is a $\{w_n(x+y)\}$ such that $u_n(x) + v_n(y) \subseteq w_n(x+y)$.
- (II) For any $\{u_n(x)\}$ and $\{\lambda_n\}$ with $\lim \lambda_n = \lambda$, there is a $\{v_n(\lambda x)\}$ such that $\lambda_n u_n(x) \subseteq v_n(\lambda x)$.

(I) implies the continuity of addition ; if $\{\lim x_n\} \ni x$ and $\{\lim y_n\} \ni y$, then $\{\lim (x_n + y_n)\} \ni x + y$, and (II), the continuity of scalar multiplication ; if $\{\lim x_n\} \ni x$ and $\lim \lambda_n = \lambda$, then $\{\lim \lambda_n x_n\} \ni \lambda x$.

§2. The neighbourhoods of zero. Let E be a linear ranked space. We will denote the system of neighbourhoods of 0 with rank n by \mathfrak{V}_n , and fundamental sequences with respect to 0 by $\{U_n\}, \{V_n\}, \cdots$. Obviously $\{\mathfrak{V}_n\}$ satisfies the axioms (A), (B), (a), (b) in [2].

Furthermore, from (I), (II), we get following properties.

- (RL₁) For any $\{U_n\}$ and $\{V_n\}$, there is a $\{W_n\}$ such that $U_n + V_n \subseteq W_n$.
- (RL₂) (i) For any $\{U_n\}$ and λ , there is a $\{V_n\}$ such that $\lambda U_n \subseteq V_n$.
 - (ii) For any x and $\{\lambda_n\}$ with $\lim \lambda_n = 0$, there is a $\{V_n\}$ such that $\lambda_n x \in V_n$.
 - (iii) For any $\{U_n\}$ and $\{\lambda_n\}$ with $\lim \lambda_n = 0$, there is a $\{V_n\}$ such that $\lambda_n U_n \subseteq V_n$.
- (RL₃) Let x be any point in E. For any $\{U_n\}$ there is a $\{v_n(x)\}$ such that $x + U_n \subseteq v_n(x)$, and, conversely, for any $\{u_n(x)\}$ there is a $\{V_n\}$ such that $u_n(x) \subseteq x + V_n$.

Proof. (RL₁), (RL₂) (i), (iii) are immediate consequences of (I), (II), respectively, putting x=y=0, $\lambda_n=\lambda$, or $\lambda=0$. As for (RL₂) (ii), taking some $\{u_n(x)\}$ and applying (II) for $\lambda=0$, there is a $\{V_n\}$ such that $\lambda_n u_n(x) \subseteq V_n$. Since $x \in u_n(x)$, we have $\lambda_n x \in V_n$. Now, we shall show (RL₃). Take any $\{U_n\}$ and some $\{u_n(x)\}$. From (I), there is a $\{v_n(x)\}$ such that $u_n(x) + U_n \subseteq v_n(x)$, and therefore $x + U_n \subseteq v_n(x)$. Conversely, for any $\{u_n(x)\}$, taking some $\{v_n(-x)\}$, there is a $\{V_n\}$ such that $u_n(x) + v_n(-x)$ $\subseteq V_n$, and therefore $-x + u_n(x) \subseteq V_n$, i.e., $u_n(x) \subseteq x + V_n$. Q.E.D.

The three conditions above are not only necessary, but sufficient for a linear space which is also a ranked space to be a linear ranked space. In other words, (I), (II) follow from (RL_1) , (RL_2) , (RL_3) . It is clear that (RL_2) (iii) can be omitted if every V in \mathfrak{V} is circled.

Proof. (I) Let $\{u_n(x)\}$, $\{v_n(y)\}$ be any fundamental sequences. From (RL₃), there are $\{U_n\}$, $\{V_n\}$ such that $u_n(x) \subseteq x + U_n$, $v_n(y) \subseteq y + V_n$. Applying (RL₁), there is a $\{W_n\}$ such that $U_n + V_n \subseteq W_n$. From (RL₃) again, there is a $\{w_n(x+y)\}$ such that $x+y+W_n \subseteq w_n(x+y)$. Thus, $u_n(x) + v_n(y) \subseteq (x+U_n) + (y+V_n) \subseteq x+y+W_n \subseteq w_n(x+y)$.

(II) Take any $\{u_n(x)\}$ and $\{\lambda_n\}$ with $\lim \lambda_n = \lambda$. From (RL₃), there is a $\{U_n\}$ such that $u_n(x) \subseteq x + U_n$. Putting $\mu_n = \lambda_n - \lambda$, we have $\lim \mu_n = 0$, and therefore by (RL₂)(i), (ii), (iii), respectively, there are $\{V_n^1\}, \{V_n^2\}, \{V_n^3\}$ such that $\lambda U_n \subseteq V_n^1$, $\mu_n x \in V_n^2$, $\mu_n U_n \subseteq V_n^3$. Then, $\lambda_n u_n(x) \subseteq (\lambda + \mu_n)(x + U_n)$ $\subseteq \lambda x + \lambda U_n + \mu_n x + \mu_n U_n \subseteq \lambda x + V_n^1 + V_n^2 + V_n^3$. Applying (RL₁), there is a $\{V_n\}$ such that $V_n^1 + V_n^2 + V_n^3 \subseteq V_n$. Finally, from (RL₃) again, there is a $\{v_n(\lambda x)\}$ such that $\lambda x + V_n \subseteq v_n(\lambda x)$. Thus, we have a $\{v_n(\lambda x)\}$ such that $\lambda_n u_n(x) \subseteq v_n(\lambda x)$. Q.E.D.

In many important examples it seems natural to take $\{x+V; V \in \mathfrak{V}_n\}$ as $\mathfrak{V}_n(x)$. If we do so, (\mathbb{RL}_3) is automatically fulfilled. Thus, when in a linear space E, families \mathfrak{V}_n are given and satisfy axioms (A), (B), (a), (b), (\mathbb{RL}_1) , \mathbb{RL}_2), E becomes a linear ranked space taking $\mathfrak{V}_n(x)$ as above.

It is easily seen that axioms (1), (2), (3) in [2] are sufficient conditions for (\mathbf{RL}_1) (\mathbf{RL}_2) (i), (ii), respectively, when every V in \mathfrak{B} is circled.

§3. Examples. As remarked above, all examples in [2] are linear ranked spaces. We shall give an example which is not a linear ranked space in earlier sense.

Let Φ be the union space of countably normed spaces $\Phi^{(p)}(p=1, 2, \dots)$ [5], i.e. $\Phi = \bigcup_{p=1}^{\infty} \Phi^{(p)}$, where

- (1) $\Phi^{(p)} \subseteq \Phi^{(p+1)}$
- (2) the systems $\{\| \|_n^{(p)}\}_{n=1,2,...}^{(p)}$ and $\{\| \|_n^{(p+1)}\}_{n=1,2,...}$ are equivalent in $\Phi^{(p)}$.

^{1) {} $\|\|_{n^{(p)}}\}_{n=1,2,\cdots}$ will denote the system of norms in $\Phi^{(p)}$. We assume that $\|\|_{1^{(p)}} \le \|\|_{2^{(p)}} \le \cdots$.

M. WASHIHARA

Put
$$v(n, p; 0) = \left\{ \varphi \in \Phi^{(p)}; \|\varphi\|_n^{(p)} < \frac{1}{n} \right\}, \mathfrak{B}_n = \{v(n, p; 0); p = 1, 2, \cdots \}$$

for $n \ge 1$, and $\mathfrak{B}_0 = \{ \emptyset \}$. It is clear that, if $m \ge n$, then $v(m, p; 0) \subseteq v(n, p; 0)$. Moreover it can be shown that, if $v(m, p; 0) \subseteq v(n, q; 0)$, then necessarily $p \le q$.

Obviously axioms (A), (a), (b) are satisfied. To prove (B), we take any U=v(m, p; 0) and V=v(n, q; 0). We may assume $p \le q$. From the hypothesis (2), there are m' and M such that $\|\varphi\|_n^{(q)} \le M \|\varphi\|_m^{(p)}$ for $\varphi \in \Phi^{(p)}$. Taking sufficient large m'', we have $m'' \ge m$ and $\|\varphi\|_n^{(q)} \le \frac{m''}{n} \|\varphi\|_{m''}^{(p)}$ for $\varphi \in \Phi^{(p)}$. Now, $W=v(m'', p; 0) \subseteq U \cap V$.

Thus, taking $\mathfrak{B}_n(\varphi) = \{\varphi + V; V \in \mathfrak{B}_n\}, \varphi$ becomes a ranked space. We shall show that convergence of sequences in φ is equivalent to usual one; we have $\{\lim \varphi_i\} \ni 0$ if and only if all φ_i belong to $\Phi^{(p)}$ for some fixed p, and $\{\varphi_i\}$ converges to 0 in $\Phi^{(p)}$, i.e. $\lim \|\varphi_i\|_n^{(p)} = 0$ for each n. If $\{\lim \varphi_i\} \ni 0$, there is a $\{U_i\}$ such that $\varphi_i \in U_i^i$. Let $U_i = v(n_i, p_i; 0)$. Since $U_i \supseteq U_{i+1}$, we have $p_i \ge p_{i+1}$, and therefore, for some i_0 , $p_i = p\left(=\min_i p_i\right)$ when $i \ge i_0$. Since $n_i \uparrow \infty$, we have $\|\varphi_i\|_n^{(p)} \to 0$ for each n. Thus φ_i belongs to $\Phi^{(p)}$ for $i \ge i_0$ and converges to 0 in $\Phi^{(p)}$. From the hypothesis (2), $\{\varphi_i\}_{i\ge i_0}$ converges to 0 in $\Phi^{(p_1)}$, too. Obviously all φ_i belong to $\Phi^{(p_1)}$, and converges to 0 in $\Phi^{(p_1)}$.

On the other hand, if for some fixed $p, \varphi_i \in \Phi^{(p)}$ and φ_i converges to 0 in $\Phi^{(p)}$, we can choose an increasing sequence of positive integers, $\{i_n\}$, such that $\|\varphi_i\|_n^{(p)} < \frac{1}{n}$ for $i \ge i_n$. Putting $U_i = v(n, p; 0)$ for i with $i_n \le i < i_{n+1}$, and $U_i = \Phi$ for $i < i_1$, we get a fundamental sequence $\{U_i\}$ such that $\varphi_i \in U_i$.

Now, we shall prove (RL_1) . Let $\{U_i\}$, $\{V_i\}$ be fundamental sequences, where $U_i = v(l_i, p_i; 0)$, $V_i = v(m_i, q_i; 0)$. We must make a $\{W_i\}$ such that $U_i + V_i \subseteq W_i$. As shown before, there are p, q, N such that $p_i = p$ and $q_i = q$ for $i \ge N$. We can assume N = 1. If p = q, putting $W_i = v(n_i, p; 0)$, where $n_i = \min\left(\left[\frac{l_i}{2}\right], \left[\frac{m_i}{2}\right]\right)$, we have $U_i + V_i \subseteq W_i$. When $p \ne q$, we may suppose p > q. Since systems $\{\| \|_n^{(p)}\}$ and $\{\| \|_n^{(q)}\}$ are equivalent in $\Phi^{(q)}$ and $m_i \uparrow \infty$ there exist i_1 and C such that $\frac{m_i}{2} \|\varphi\|_{m_i}^{(q)} \ge \|\varphi\|_1^{(p)}$ for any $\varphi \in \Phi^{(q)}$, and for $i \ge i_1$. Thus, when $i \ge i_1$, $\|\varphi\|_1^{(p)} < \frac{1}{2}$ for any $\varphi \in V_i$. Repeating this process, we obtain an increasing sequence $\{i_\nu\}$ such that, when $i \ge i_\nu$, $\|\varphi\|_{\nu}^{(p)} < \frac{1}{2\nu}$ for $\varphi \in V_i$. Moreover, we can assume $l_i \ge 2\nu$ for $i \ge i_\nu$. Now, putting $W_i = v(\nu, p; 0)$ for i with

 $i_{\nu} \leq i < i_{\nu+1}$, and $W_i = \Phi$ for $i < i_1$, we have $U_i + V_i \subseteq W_i$.

Clearly every V in \mathfrak{V} is circled. The axioms (2) and (3) in [2] hold, putting $\psi(\lambda, \mu) = \left[\frac{\lambda}{\mu}\right]$. Hence (RL₂) is fulfilled.

Finally we remark that Φ may not satisfy the axiom (1) in [2]; suppose that the inequalities $\|\varphi\|_{1}^{(p)} \ge p \cdot \|\varphi\|_{p}^{(1)}$ $(p=1, 2, \cdots)$ hold for every $\varphi \in \Phi^{(1), 2)}$ Then, for any l and m there are U and V, respectively in \mathfrak{B}_{l} and \mathfrak{B}_{m} such that no W in \mathfrak{B}_{n} , $n \ge 1$, can include U+V. In fact, let U=v(l, 1; 0), V=v(m, l+1; 0), and suppose $U+V\subseteq W$, where $W=v(n, p; 0), n\ge 1$. Since $V\subseteq W, p\ge l+1$. For any $\varphi \in W$, $\|\varphi\|_{n}^{(p)} < \frac{1}{n}$, a fortiori $\|\varphi\|_{1}^{(p)} < 1$. If we take a $\varphi \in \Phi^{(1)}$ such that $\|\varphi\|_{l+1}^{(p)} \ge (l+1)\|\varphi\|_{l}^{(1)}$, therefore $\|\varphi\|_{l}^{(1)} \le \frac{1}{l+1} < \frac{1}{l}$, i.e. $\varphi \in U$. Hence $U \not\subseteq W$. This contradicts the fact that $U+V\subseteq W$.

§4. Bounded sets in linear ranked spaces. We already gave a definition of bounded sets in linear ranked spaces in earlier sense in [3], and another definition in [4]. Now, let E be a linear ranked space in new sense. We use Definition 2 in [4]: A subset B in E is called bounded if there is a fundamental sequence $\{V_n\}$, any member of which absorbs B. The study for bounded sets in [4] can be applied to our case. For example, from (RL₁), it follows that any finite union and finite sum of bounded sets are also bounded, from (RL₂) (i), that any scalar multiple of bounded set is bounded, and from (RL₃) (ii), that any one point set is bounded.

We give a sufficient condition for the property that every convergent sequence is bounded. It is as follows: For any $\{U_n\}$ there is a $\{V_n\}$ such that every V_n is circled and for some N, $\bigcup_{\lambda} \lambda V_n = \bigcup_{\lambda} \lambda V_N$ for $n \ge N$. The proof is trivial and omitted. The union of countably normed spaces Φ in § 3 evidently satisfies this condition.

Now, we shall show that, in Φ , boundedness is equivalent to usual one; *B* is bounded in our sense, if and only if *B* is included in some $\Phi^{(p)}$ and $\sup_{\varphi \in B} \|\varphi\|_n^{(p)} < \infty$ for each *n*. In fact, suppose that, for some $\{V_i\}$, where $V_i = v(n_i, p_i; 0)$, every V_i absorbs *B*, and let $p = \min. p_i$. Clearly, $B \subset \Phi^{(p)}$ and $\sup_{\varphi \in B} \|\varphi\|_n^{(p)} < \infty$ for each *n*. On the other hand if $B \subset \Phi^{(p)}$ and $\sup_{\varphi \in B} \|\varphi\|_n^{(p)} < \infty$ for each *n*, then putting $U_n = v(n, p; 0)$, we get a $\{U_n\}$ any member of which absorbs *B*.

No. 4]

²⁾ This is possible, when we omit some finite members of $\{\| \|_n^{(p)}\}\)$, and multiply by some positive numbers. In each $\Phi^{(p)}$, the new system of norms is equivalent to initial one, and therefore convergence of sequence in Φ is unaltered.

M. WASHIHARA

Finally we remark that first definition of boundedness in [3] (Definition 1 in [4]) is not always equivalent to usual one. To prove this, we put $\Phi = \mathcal{D}, \Phi^{(p)} = \mathcal{D}_p = \{\varphi \in \mathcal{D} ; \operatorname{car} \varphi \subseteq [-p, p]\}$ and define the systems of norms as follows. Let $\|\varphi\|_n = \max_{0 \le j \le n-1} \sup_x |\varphi^{(j)}(x)|$. In $\Phi^{(p)}$, let $|\varphi|_1^{(p)} = \sup_{\|\varphi\|_p \le 1} |\varphi(\psi)|^3$, $\cdots |\varphi|_p^{(p)} = \sup_{\|\varphi\|_1 \le 1} |\varphi(\psi)|, |\varphi|_{p+n}^{(p)} = \|\varphi\|_n (n=1, 2, \cdots)$. Obviously two systems $\{\|\|\|_n\}$ and $\{|\|_n^{(p)}\}$ are equivalent in $\Phi^{(p)}$, and therefore convergence of sequences in Φ coincides with usual one. In this space Φ , $V = v(2, 1; 0) = \{\varphi \in \mathcal{D}_1; |\varphi|_2^{(1)} = \sup_x |\varphi(x)| < \frac{1}{2}\}$ is bounded by Definition 1; for any *n* there is a *U* in \mathfrak{B}_n which absorbs *V*. In fact, let U = v(n, n-1; 0). Since $|\varphi|_n^{(n-1)} = \|\varphi\|_1$, $U = \{\varphi \in \mathcal{D}_{n-1}; \sup_x |\varphi(x)| < \frac{1}{n}\}$. Hence $\frac{2}{n}V \subseteq U$. It is clear that this set is not bounded in usual sense.

References

- K. Kunugi: Sur la méthode des espaces rangés. I, II. Proc. Japan Acad., 42, 318-322, 549-554 (1966).
- [2] M. Washihara: On ranked spaces and linearity. Proc. Japan Acad., 43, 584-589 (1967).
- [3] —: The continuity and the boundedness of linear functionals on linear ranked spaces. Proc. Japan Acad., 43, 590-593 (1967).
- [4] M. Washihara and Y. Yoshida: Remarks on bounded sets in linear ranked spaces. Proc. Japan Acad., 44, 73-76 (1968).
- [5] I. M. Gelfand and G. E. Shilov: Generalized Functions, Vol. 2 (1958).

3) $\varphi(\psi) = \int_{-\infty}^{\infty} \varphi(x)\psi(x)dx$ where $\varphi, \psi \in \mathcal{D}$.