84. Continuity in Mixed Norms

By Mitsuru Nakai
Mathematical Institute, Nagoya University

(Comm. by Kinjirô Kunugi, m. J. A., May 12, 1969)

1. Consider a normed vector lattice X over the real number field R with $X \supset R$. The norm $\|\circ\|_{X}$ on X is supposed to satisfy

$$
\begin{align*}
& \quad \min \left(a,\|x\|_{X}\right) \leq\|(a \vee x) \wedge \beta\|_{X} \tag{1}\\
& \leq \min \left(\beta,\|x\|_{X}\right)(\forall x \in X, \forall a, \forall \beta \in R, 0 \leq a \leq \beta) .
\end{align*}
$$

Take a seminorm p_{X} on X satisfying the following:

$$
\begin{equation*}
p_{X}(a)=0(\forall a \in R) ; \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
p_{X}^{2}(x)=p_{X}^{2}(x \wedge a)+p_{X}^{2}(x \vee a)(\forall x \in X, \forall a \in R) ; \tag{3}
\end{equation*}
$$

(4) $\lim _{\alpha^{\prime} \uparrow \alpha, \beta^{\prime} \downarrow \beta} p_{X}\left(\left(a^{\prime} \vee x\right) \wedge \beta^{\prime}\right)=p_{X}((\alpha \vee x) \wedge \beta)(\forall x \in X, \forall a, \forall \beta \in R)$.

With the aid of p_{X} we can define a new norm in X :

$$
\begin{equation*}
\|x\|_{X}=\|x\|_{X}+p_{X}(x) . \tag{5}
\end{equation*}
$$

Let $Y,\|\circ\|_{Y}, p_{Y}$, and $\|\circ\|_{Y}$ be as above. Then we can show the following

Theorem. Suppose that T is an isomorphism of $\left(X,\|\circ\|_{X}\right)$ onto $\left(Y,\|\circ\|_{Y}\right)$ as normed vector lattices with $T(\alpha)=a(\forall a \in R)$. Then

$$
\begin{equation*}
\exists K: K^{-1} p_{X}(x) \leq p_{Y}(T(x)) \leq K p_{X}(x)(\forall x \in X) \tag{6}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\exists K: K^{-1}\left|\left\|x \left|\left\|_{X} \leq\left|\left|| T (x) | \left\|_{Y} \leq K\left|\|x \mid\|_{X}(\forall x \in X) .\right.\right.\right.\right.\right.\right.\right.\right. \tag{7}
\end{equation*}
$$

Proof. Since $\|T(x)\|_{Y}=\|x\|_{X}$, (6) clearly implies (7). To show the reversed implication let $A=\left\{x \in X x \geq 0,\|x\|_{X} \leq 1\right\}$. Then from (7) it follows that
(8)

$$
\exists K: p_{Y}(T(x)) \leq K\left(1+p_{X}(x)\right)(\forall x \in A) .
$$

Fix an arbitrary $x \in A$ and define

$$
x_{i}=n\left(\left(\frac{i-1}{n} \vee x\right) \wedge \frac{i}{n}-\frac{i-1}{n}\right)(i=1,2, \cdots, n)
$$

By (1), $x_{i} \in A(i=1,2, \cdots, n)$. Since T is an isomorphism of vector lattices with $T(a)=a(a \in R)$,

$$
T\left(x_{i}\right)=n\left(\left(\frac{i-1}{n} \vee T(x)\right) \wedge \frac{i}{n}-\frac{i-1}{n}\right)(i=1,2, \cdots, n)
$$

In view of (2), we see that

$$
p_{X}\left(x_{i}\right)=n p_{X}\left(\left(\frac{i-1}{n} \vee x\right) \wedge \frac{i}{n}\right), \quad p_{Y}\left(T\left(x_{i}\right)\right)=n p_{Y}\left(\left(\frac{i-1}{n} \vee T(x)\right) \wedge \frac{i}{n}\right)
$$

Repeated use of (3) yields

$$
p_{X}^{2}(x)=\sum_{i=1}^{n} p_{X}^{2}\left(\left(\frac{i-1}{n} \vee x\right) \wedge \frac{i}{n}\right), p_{Y}^{2}(T(x))=\sum_{i=1}^{n} p_{Y}^{2}\left(\left(\frac{i-1}{n} \vee T(x)\right) \wedge \frac{i}{n}\right)
$$

and therefore

$$
\begin{equation*}
n^{2} p_{X}^{2}(x)=\sum_{i=1}^{n} p_{X}^{2}\left(x_{i}\right), n^{2} p_{Y}^{2}(T(x))=\sum_{i=1}^{n} p_{Y}^{2}\left(T\left(x_{i}\right)\right) \tag{9}
\end{equation*}
$$

Since $x_{i} \in A$, (8) implies that

$$
p_{Y}^{2}\left(T\left(x_{i}\right)\right) \leq K^{2}\left(1+2 p_{X}\left(x_{i}\right)+p_{X}^{2}\left(x_{i}\right)\right)(i=1,2, \cdots, n) .
$$

On summing up these n inequalities and using (9), we obtain

$$
n^{2} p_{Y}^{2}(T(x)) \leq K^{2}\left(n+2 \sum_{i=1}^{n} p_{X}\left(x_{i}\right)+n^{2} p_{X}^{2}(x)\right) .
$$

Setting $z_{i}^{n}=\left(\frac{i-1}{n} \vee x\right) \wedge \frac{i}{n}(i=1,2, \cdots, n)$, we deduce

$$
\begin{equation*}
p_{Y}^{2}(T(x)) \leq K^{2} p_{X}^{2}(x)+\frac{K^{2}}{n}+2 K^{2} \cdot \frac{1}{n} \sum_{i=1}^{n} p_{X}\left(z_{i}^{n}\right) \tag{10}
\end{equation*}
$$

Let $z_{i_{n}}^{n}$ be such that

$$
p_{X}\left(z_{i_{n}}^{n}\right)=\max _{1 \leq i \leq n} p_{X}\left(z_{i}^{n}\right) .
$$

we claim that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p_{X}\left(z_{i_{n}}^{n}\right)=0 . \tag{11}
\end{equation*}
$$

Contrary to the assertion assume the existence of a subsequence $\{n(k)\}_{k=1}^{\infty}$ of positive integers such that $\varepsilon=\lim _{k \rightarrow \infty} p_{X}\left(z_{i_{n}(k)}^{n(k)}\right)>0$. By choosing a suitable subsequence of $\{n(k)\}$, if necessary, we may assume that $\left\{i_{n(k)} / n(k)\right\}$ converges to a number c. By (4),

$$
\lim _{m \rightarrow \infty} p_{X}\left(\left(\left(c-\frac{1}{m}\right) \vee x\right) \wedge\left(c+\frac{1}{m}\right)\right)=p_{X}((c \vee x) \wedge c)=p_{X}(c)=0
$$

Therefore we can find an m such that

$$
p_{X}((a \vee x) \wedge \beta)<\varepsilon, a=c-1 / m, \beta=c+1 / m
$$

For all sufficiently large $k, a<\left(i_{n(k)}-1\right) / n(k)<i_{n(k)} / n(k)<\beta$. Again by (3) we see that

$$
p_{X}\left(z_{i_{n}(k)}^{n(k)}\right) \leq p_{X}((a \vee x) \wedge \beta)<\varepsilon,
$$

which is a contradiction, and therefore (11) is valid. Hence

$$
0 \leq \frac{1}{n} \sum_{i=1}^{n} p_{X}\left(z_{i}^{n}\right) \leq p_{X}\left(z_{i_{n}}^{n}\right) \rightarrow 0
$$

as $n \rightarrow \infty$. On making $n \rightarrow \infty$ in (10), we now conclude that $p_{Y}(T(x))$ $\leq K p_{X}(x)$. The same argument applied for T^{-1} gives $K^{-1} p_{X}(x)$ $\leq p_{Y}(T(x))$.

Thus (6) is valid at least for $x \in A$. For general x, write x as

$$
x=\|x\|(y \vee 0+y \wedge 0), y=\frac{1}{\|x\|} x
$$

Observe that (3) implies

$$
\begin{aligned}
p_{X}^{2}(x) & =\|x\|^{2}\left(p_{X}^{2}(y \vee 0)+p_{X}^{2}(y \wedge 0)\right), \\
p_{Y}^{2}(T(x) & =\|x\|^{2}\left(p_{Y}^{2}(T(y) \vee 0)+p_{Y}^{2}(T(y) \wedge 0)\right) .
\end{aligned}
$$

Since $y \vee 0$ and $-(y \wedge 0)$ are in A, (6) for $y \vee 0$ and $-(y \wedge 0)$ with the above conclude (6) for x.
2. We state an application of Theorem 1. Let Ω and Ω^{\prime} be open sets in the m-dimensional Euclidean space E^{m}. We denote by $W(\Omega)$ the class of functions f in the local Sobolev space $W_{\text {loc }}^{1,2}(\Omega)$ with finite Dirichlet integrals over Ω :

$$
D_{\Omega}(f)=\int_{\Omega} \sum_{i=1}^{m}\left(\frac{\partial f}{\partial x^{i}}\right)^{2} d x^{1} \cdots d x^{m}<\infty .
$$

Theorem. Suppose that $y=t(x)$ is a homeomorphism of Ω onto Ω^{\prime} with the property

$$
\begin{equation*}
g \in W\left(\Omega^{\prime}\right) \cap L^{\infty}\left(\Omega^{\prime}\right) \rightleftarrows g \circ t \in W(\Omega) \cap L^{\infty}(\Omega) . \tag{12}
\end{equation*}
$$

Then $g \in W\left(\Omega^{\prime}\right)$ if and only if $g \circ t \in W(\Omega)$ and

$$
\begin{equation*}
\exists K<\infty: K^{-2} D_{\Omega}(f) \leq D_{\Omega}\left(f \circ t^{-1}\right) \leq K^{2} D_{\Omega}(f)(f \in W(\Omega)) \tag{13}
\end{equation*}
$$

Proof. Let $X=W(\Omega) \cap L^{\infty}(\Omega), \quad Y=W\left(\Omega^{\prime}\right) \cap L^{\infty}\left(\Omega^{\prime}\right),\|\circ\|_{X}=\|\circ\|_{L^{\infty}(\Omega)}$, $\|\circ\|_{Y}=\|\circ\|_{L^{\infty}\left(\Omega^{\prime}\right)}, p_{X}(f)=\left(D_{\Omega}(f)\right)^{1 / 2}$, and $p_{Y}(g)=\left(D_{\Omega^{\prime}}(g)\right)^{1 / 2}$. Then conditions (1)-(4) are met by these. Define $T(f)=f \circ t^{-1}$. Then T satisfies the condition of Theorem 1. Moreover ($X,\left|\|\circ \mid\|_{X}\right.$) and ($Y,\left\|\left||\circ| \|_{Y}\right.\right.$) are Banach spaces and T is a closed map. Hence by the closed graph theorem, T is bicontinuous, i.e. (7) is valid. Therefore we obtain (13) for $f \in X=W(\Omega) \cap L^{\infty}(\Omega)$, and then for $f \in W(\Omega)$.

Remark. It can be seen that a homeomorphism t with (13) is a quasiconformal mapping if $m=2$ and a quasiisometry if $m \geq 3$, and vice versa. Thus (12) may be considered as a new definition of quasiconformal mappings for $m=2$ and quasiisometry for $m \geq 3$. A homeomorphism t with (12) induces a ring isomorphism of $M(\Omega)=W(\Omega)$ $\cap L^{\infty}(\Omega) \cap C(\Omega)$ onto $M\left(\Omega^{\prime}\right)=W\left(\Omega^{\prime}\right) \cap L^{\infty}\left(\Omega^{\prime}\right) \cap C(\Omega)$. The converse is also true: Any ring isomorphism of $M(\Omega)$ onto $M\left(\Omega^{\prime}\right)$ is induced by a homeomorphism t with (12). The ring $M(\Omega)$ is called the Royden algebra. These results are also valid if Ω and Ω^{\prime} are replaced by Riemannian manifolds. Details of results mentioned in this remark will be published elsewhere.

