Continuity in Mixed Norms 84.

By Mitsuru NAKAI

Mathematical Institute, Nagoya University

(Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1969)

1. Consider a normed vector lattice X over the real number field *R* with $X \supset R$. The norm $\| \circ \|_X$ on *X* is supposed to satisfy

(1)
$$\min (a, ||x||_X) \leq ||(a \lor x) \land \beta||_X$$
$$\leq \min (\beta, ||x||_X) (\forall x \in X, \forall a, \forall \beta \in R, 0 \leq a \leq \beta).$$

Take a seminorm p_x on X satisfying the following:

(2) $p_x(a) = 0 (\forall a \in R);$

 $p_{X}^{2}(x) = p_{X}^{2}(x \wedge a) + p_{X}^{2}(x \vee a) (\forall x \in X, \forall a \in R);$ (3)

 $(4) \quad \lim_{a' \uparrow a, \beta' \downarrow \beta} p_X((a' \lor x) \land \beta') = p_X((a \lor x) \land \beta) \ (\forall x \in X, \forall a, \forall \beta \in R).$

With the aid of p_X we can define a new norm in X:

(5) $|||x|||_{x} = ||x||_{x} + p_{x}(x).$

Let Y, $\|\circ\|_{Y}$, p_{Y} , and $\||\circ|\|_{Y}$ be as above. Then we can show the following

Theorem. Suppose that T is an isomorphism of $(X, \|\circ\|_X)$ onto $(Y, \| \circ \|_{Y})$ as normed vector lattices with $T(a) = a(\forall a \in R)$. Then $\exists K: K^{-1}p_X(x) \leq p_Y(T(x)) \leq Kp_X(x) \ (\forall x \in X)$ (6) if and only if (

7)
$$\exists K: K^{-1}|||x|||_{X} \leq |||T(x)|||_{Y} \leq K|||x|||_{X} \ (\forall x \in X).$$

Proof. Since $||T(x)||_{Y} = ||x||_{X}$, (6) clearly implies (7). To show the reversed implication let $A = \{x \in X \mid x \ge 0, \|x\|_x \le 1\}$. Then from (7) it follows that

(8) $\exists K : p_Y(T(x)) \leq K(1 + p_X(x)) \; (\forall x \in A).$ Fix an arbitrary $x \in A$ and define

$$x_i = n\left(\left(\frac{i-1}{n} \lor x\right) \land \frac{i}{n} - \frac{i-1}{n}\right) (i=1, 2, \cdots, n).$$

By (1), $x_i \in A$ ($i=1, 2, \dots, n$). Since T is an isomorphism of vector lattices with $T(a) = a(a \in R)$,

$$T(x_i)=n\Big(\Big(\frac{i-1}{n}\vee T(x)\Big)\wedge \frac{i}{n}-\frac{i-1}{n}\Big)(i=1, 2, \dots, n).$$

In view of (2), we see that

$$p_X(x_i) = np_X\left(\left(\frac{i-1}{n} \lor x\right) \land \frac{i}{n}\right), \quad p_Y(T(x_i)) = np_Y\left(\left(\frac{i-1}{n} \lor T(x)\right) \land \frac{i}{n}\right).$$

Repeated use of (3) yields

$$p_X^2(x) = \sum_{i=1}^n p_X^2\left(\left(\frac{i-1}{n} \lor x\right) \land \frac{i}{n}\right), \ p_Y^2(T(x)) = \sum_{i=1}^n p_Y^2\left(\left(\frac{i-1}{n} \lor T(x)\right) \land \frac{i}{n}\right)$$

(9)
$$n^2 p_X^2(x) = \sum_{i=1}^n p_X^2(x_i), \ n^2 p_Y^2(T(x)) = \sum_{i=1}^n p_Y^2(T(x_i)).$$

Since $x_i \in A$, (8) implies that

 $p_X^2(T(x_i)) \leq K^2(1+2p_X(x_i)+p_X^2(x_i)) \ (i=1, 2, \dots, n).$ On summing up these n inequalities and using (9), we obtain

$$n^{2}p_{Y}^{2}(T(x)) \leq K^{2}\left(n+2\sum_{i=1}^{n}p_{X}(x_{i})+n^{2}p_{X}^{2}(x)\right).$$

Setting $z_i^n = \left(\frac{i-1}{n} \lor x\right) \land \frac{i}{n}$ $(i=1, 2, \dots, n)$, we deduce

(10)
$$p_{Y}^{2}(T(x)) \leq K^{2} p_{X}^{2}(x) + \frac{K^{2}}{n} + 2K^{2} \cdot \frac{1}{n} \sum_{i=1}^{n} p_{X}(z_{i}^{n}).$$

Let $z_{i_n}^n$ be such that

$$p_X(z_{i_n}^n) = \max_{1 \le i \le n} p_X(z_i^n).$$

we claim that

 $\lim p_X(z_{i_n}^n) = 0.$ (11)

Contrary to the assertion assume the existence of a subsequence $\{n(k)\}_{k=1}^{\infty}$ of positive integers such that $\varepsilon = \lim_{k \to \infty} p_X(z_{i_n(k)}^{n(k)}) > 0$. By choosing a suitable subsequence of $\{n(k)\}$, if necessary, we may assume that $\{i_{n(k)}/n(k)\}$ converges to a number c. By (4),

$$\lim_{m\to\infty}p_X\left(\left(\left(c-\frac{1}{m}\right)\vee x\right)\wedge\left(c+\frac{1}{m}\right)\right)=p_X((c\vee x)\wedge c)=p_X(c)=0.$$

Therefore we can find an m such that

 $p_x((a \lor x) \land \beta) < \varepsilon, a = c - 1/m, \beta = c + 1/m.$

For all sufficiently large k, $a < (i_{n(k)} - 1)/n(k) < i_{n(k)}/n(k) < \beta$. Again by (3) we see that

 $p_X(z_{i_n(k)}^{n(k)}) \le p_X((a \lor x) \land \beta) < \varepsilon$, which is a contradiction, and therefore (11) is valid. Hence

 $0 \leq \frac{1}{n} \sum_{i=1}^{n} p_X(z_i^n) \leq p_X(z_{i_n}^n) \rightarrow 0$

On making $n \to \infty$ in (10), we now conclude that $p_{\nu}(T(x))$ as $n \rightarrow \infty$. The same argument applied for T^{-1} gives $K^{-1}p_{X}(x)$ $\leq K p_{X}(x).$ $\leq p_{v}(T(x)).$

Thus (6) is valid at least for $x \in A$. For general x, write x as

$$x = ||x|| (y \lor 0 + y \land 0), y = \frac{1}{||x||} x.$$

Observe that (3) implies

 $p_X^2(x) = ||x||^2 (p_X^2(y \vee 0) + p_X^2(y \wedge 0)),$ $p_{Y}^{2}(T(x) = ||x||^{2}(p_{Y}^{2}(T(y) \vee 0) + p_{Y}^{2}(T(y) \wedge 0)).$

Since $y \vee 0$ and $-(y \wedge 0)$ are in A, (6) for $y \vee 0$ and $-(y \wedge 0)$ with the above conclude (6) for x.

386

No. 5]

2. We state an application of Theorem 1. Let Ω and Ω' be open sets in the *m*-dimensional Euclidean space E^m . We denote by $W(\Omega)$ the class of functions f in the local Sobolev space $W_{loc}^{1,2}(\Omega)$ with finite Dirichlet integrals over Ω :

$$D_{g}(f) = \int_{g} \sum_{i=1}^{m} \left(\frac{\partial f}{\partial x^{i}}\right)^{2} dx^{1} \cdots dx^{m} < \infty.$$

Theorem. Suppose that y = t(x) is a homeomorphism of Ω onto Ω' with the property

(12) $g \in W(\Omega') \cap L^{\infty}(\Omega') \rightleftharpoons g \circ t \in W(\Omega) \cap L^{\infty}(\Omega).$ Then $g \in W(\Omega')$ if and only if $g \circ t \in W(\Omega)$ and (13) $\exists K < \infty : K^{-2}D_g(f) \le D_{g'}(f \circ t^{-1}) \le K^2D_g(f) \ (f \in W(\Omega)).$

Proof. Let $X = W(\Omega) \cap L^{\infty}(\Omega)$, $Y = W(\Omega') \cap L^{\infty}(\Omega')$, $\| \circ \|_{X} = \| \circ \|_{L^{\infty}(\Omega')}$, $p_{X}(f) = (D_{\varrho}(f))^{1/2}$, and $p_{Y}(g) = (D_{\varrho'}(g))^{1/2}$. Then conditions (1)-(4) are met by these. Define $T(f) = f \circ t^{-1}$. Then T satisfies the condition of Theorem 1. Moreover $(X, ||| \circ |||_{X})$ and $(Y, ||| \circ |||_{Y})$ are Banach spaces and T is a closed map. Hence by the closed graph theorem, T is bicontinuous, i.e. (7) is valid. Therefore we obtain (13) for $f \in X = W(\Omega) \cap L^{\infty}(\Omega)$, and then for $f \in W(\Omega)$.

Remark. It can be seen that a homeomorphism t with (13) is a quasiconformal mapping if m=2 and a quasiisometry if $m\geq 3$, and vice versa. Thus (12) may be considered as a new definition of quasiconformal mappings for m=2 and quasiisometry for $m\geq 3$. A homeomorphism t with (12) induces a ring isomorphism of $M(\Omega) = W(\Omega) \cap L^{\infty}(\Omega) \cap C(\Omega)$ onto $M(\Omega') = W(\Omega') \cap L^{\infty}(\Omega') \cap C(\Omega)$. The converse is also true: Any ring isomorphism of $M(\Omega)$ onto $M(\Omega')$ is induced by a homeomorphism t with (12). The ring $M(\Omega)$ is called the Royden algebra. These results are also valid if Ω and Ω' are replaced by Riemannian manifolds. Details of results mentioned in this remark will be published elsewhere.