80. Notes on Generalized Commuting Properties of Skew Product Transformations

By Ryotaro Sato
Department of Mathematics, Josai University, Saitama (Comm. by Kinjirô Kunugr, m. J. A., May 12, 1969)

1. Introduction. Let (M, Σ, m) be a measure space where M is a set of elements, Σ a σ-field of measurable subsets of M, and m a countably additive measure on Σ. An invertible measure-preserving transformation T of the measure space (M, Σ, m) is a one-to-one mapping of M onto itself such that if $B \in \Sigma$ then $T B$ and $T^{-1} B \in \Sigma$ with $m(T B)=m\left(T^{-1} B\right)=m(B)$. Let © \mathbb{B}_{3} be the group of all invertible measurepreserving transformations of (M, Σ, m) with I denoting the identity transformation on M. Associated with $T \in \mathbb{B}$ is a sequence $C_{n}(T)$, $n=0,1,2, \cdots$, of subfamilies of \mathbb{C} defined inductively as follows:

$$
\begin{aligned}
& C_{o}(T)=\{S \in \mathfrak{G} \mid S=I \text { a.e. }\}, \\
& C_{n}(T)=\left\{S \in \mathbb{G} \mid S T S^{-1} T^{-1} \in C_{n-1}(T)\right\} .
\end{aligned}
$$

It is clear that $C_{n}(T) \subset C_{n+1}(T)$ for each n. If there exists an integer N such that $C_{N}(T)=C_{N+1}(T)$ then $C_{n}(T)=C_{N}(T)$ for all $n \geqq N$. R. L. Adler [1] called $C_{n}(T)$ the nth class of generalized T-commuting transformations and defined the generalized commuting order $N(T)$ of T as follows:

$$
N(T)=\left\{\begin{array}{l}
\min \left\{n \mid C_{n}(T)=C_{n+1}(T)\right\} \text { if there exists an integer } N \text { such } \\
\text { that } C_{N}(T)=C_{N+1}(T), \\
\infty \text { if } C_{n}(T) \neq C_{n+1}(T) \text { for each } n .
\end{array}\right.
$$

Let H be the two-dimensional torus, i.e., $H=K \times K$, where K $=\{\exp [2 \pi i t] \mid 0<t \leqq 1\}$, equipped with the normalized Haar measure λ and let $T_{r, \mu}$ denote the invertible measure-preserving transformation on H which is defined by

$$
T_{\gamma, \mu}:(x, y) \rightarrow\left(x \gamma, y \cdot x^{\mu}\right)
$$

where γ is an element of K such that $\gamma^{n} \neq 1$ for every $n \neq 0$ and μ a non-zero integer. In [1], Adler asserted and proved the fact that $N\left(T_{r, \mu}\right)=2$. However I could not follow his proof. In this paper we shall assert and prove that $N\left(T_{r, \mu}\right)=3$. The method of the proof depends upon Adler's idea in [1].
2. Preliminaries. Let X be a half open unit interval $(0,1]$ equipped with the usual topology. Since X is homeomorphic to the circle group K by the mapping ρ of X onto K which is defined by $\rho(x)$ $=\exp [2 \pi i x]$, we may consider X as the circle group equipped with the normalized Haar measure. Let $H=X \times X$ be the topological product
group of X and X equipped with the normalized Haar measure λ. We shall consider the following skew product measure-preserving transformation defined on H. Let $T_{r, \alpha}$ denote the measure-preserving transformation with α-function which is defined by $T_{r, \alpha}:(x, y) \rightarrow(x+\gamma$, $y+\alpha(x)$) (additions modulo 1) where γ is an irrational number and $\alpha(\cdot)$ a real-valued measurable function on X. Conditions for ergodicity of $T_{r, \alpha}$ along with the proof that it is measure-preserving can be found in H. Anzai's paper [2]. Furthermore, two other results from [2] upon which the subsequent work depends are the following.

Proper value criterion. The value $\exp [2 \pi i \xi]$ is a proper value of $T_{r, \alpha}$ if and only if there exists an integer p and a real-valued measurable function $\theta(\cdot)$ on X such that

$$
\xi-p \alpha(x)=\theta(x+\gamma)-\theta(x) \quad(\operatorname{modulo} 1) \quad \text { a.e. }
$$

Spatial isomorphism criterion. If S is an invertible measurepreserving transformation such that $S T_{r, \alpha} S^{-1}=T_{r, \beta}$ a.e. where $T_{r, \alpha}$ and $T_{\gamma, \beta}$ are ergodic skew product transformations with α-function and β function, respectively, then S has either the form

$$
S:(x, y) \rightarrow(x+u, y+\theta(x))
$$

(additions modulo 1) where u is a real constant and $\theta(\cdot)$ a real-valued measurable function on X such that

$$
\beta(x+u)-\alpha(x)=\theta(x+\gamma)-\theta(x) \quad(\operatorname{modulo} 1) \quad \text { a.e. }
$$

or

$$
S:(x, y) \rightarrow(x+u,-y+\theta(x))
$$

(additions modulo 1) where u and $\theta(\cdot)$ now satisfy

$$
\beta(x+u)+\alpha(x)=\theta(x+\gamma)-\theta(x) \quad(\text { molulo 1) a.e. }
$$

3. Generalized commuting properties. Let γ be an irrational number and $\alpha(\cdot)$ denote a real-valued measurable function on X of the form $\alpha: x \rightarrow \mu x+\delta$ where μ is a non-zero integer and δ a real constant. We shall restrict ourselves to the skew product transformation $T_{r, \alpha}$ with the above α-function.

Theorem. The generalized commuting order $N\left(T_{r, \alpha}\right)=3$. Furthermore $C_{0}\left(T_{r, \alpha}\right), C_{1}\left(T_{r, \alpha}\right), C_{2}\left(T_{r, \alpha}\right)$, and $C_{3}\left(T_{r, \alpha}\right)$ are subgroups of the group (G) of all invertible measure-preserving transformations of (H, \mathfrak{M}, λ) where \mathfrak{M} is the σ-field of all λ-measurable subsets of H.

The theorem is established in a sequence of propositions.
Lemma. If T is the invertible measure-preserving transformation on H which is defined by $T:(x, y) \rightarrow(x+\gamma, y+\mu x+\delta)$ (additions modulo 1) where γ is an irrational number, μ a non-zero integer, and δ a real constant, then T is totally ergodic and has quasi-discrete spectrum of order 2.

The proof is not difficult, whence we omit it here (refer to [3]).
Proposition 1. $S \in C_{1}\left(T_{r, \alpha}\right)$, i.e., $S T_{r, \alpha}=T_{r, \alpha} S$ a.e. if and only if S
almost everywhere is of the form

$$
S:(x, y) \rightarrow\left(x+\frac{m \gamma+q}{\mu}, y+m x+c\right)
$$

(additions modulo 1) where m is an integer, $q=0,1,2, \cdots$, or $|\mu|-1$, and c a real constant.

The proof is analogous to that of [1, Proposition 1, p. 9], whence we omit the details.

Let S be an invertible measure-preserving transformation on H such that $S^{\mu}=T_{r, \alpha}$ a.e. Then S commutes with $T_{r, \alpha}$ and so it almost everywhere must have the form

$$
S:(x, y) \rightarrow\left(x+\frac{m \gamma+q}{\mu}, y+m x+c\right)
$$

(additions modulo 1), whence S^{μ} almost everywhere is of the form $S^{\mu}:(x, y) \rightarrow\left(x+m \gamma, y+\mu m x+\mu c+\frac{1}{2}[\mu-1] m[m \gamma+q]\right)$ (additions modulo 1). This together with $S^{\mu}=T_{\gamma, \alpha}$ implies $m \gamma=\gamma$ (modulo 1), whence $m=1$. Thus

$$
\mu c+\frac{1}{2}(\mu-1)(\gamma+q)=\delta \quad(\text { modulo } 1)
$$

i.e.

$$
\begin{equation*}
\left.c=\left[2 \delta+(1-\mu)(\gamma+q)+2 q^{\prime}\right] / 2 \mu \quad \text { (modulo } 1\right) \tag{1}
\end{equation*}
$$

where $q^{\prime}=0,1,2, \cdots$, or $|\mu|-1$. Conversely if S almost everywhere is of the form $S:(x, y) \rightarrow\left(x+\frac{\gamma+q}{\mu}, y+x+c\right)$ (additions modulo 1) where c is defined by (1), then $S^{\mu}=T_{r, \alpha}$ a.e.

Now it is easy to see that if S is a μ th root of $T_{r, \alpha}$ then the family of the transformations almost everywhere equal to one of the forms $S^{n} R$ where n is an integer and $R:(x, y) \rightarrow\left(x+\frac{q}{\mu}, y+c\right)$ in which $q=0$, $1,2, \cdots$, or $|\mu|-1$ and c a real constant coincides with $C_{1}\left(T_{r, \alpha}\right)$.

Proposition 2. $S \in C_{2}\left(T_{r, \alpha}\right)$ if and only if S almost everywhere is of the form

$$
S:(x, y) \rightarrow(\varepsilon x+u, y+k x+c)
$$

(additions modulo 1) where $\varepsilon=1$ or $-1, k$ is an integer, and c a real constant.

Proof. Let $S \in C_{2}\left(T_{r, \alpha}\right)$. Then $S T_{r, \alpha} S^{-1} T_{r, \alpha}^{-1} \in C_{1}\left(T_{r, \alpha}\right)$, whence

$$
S T_{r, \alpha} S^{-1} T_{r, \alpha}^{-1}=U^{n} R \quad \text { a.e. }
$$

where U is a μ th root of $T_{r, \alpha}$ and $R:(x, y) \rightarrow\left(x+\frac{q}{\mu}, y+d\right)$ (additions modulo 1). Therefore

$$
S T_{r, \alpha} S^{-1}=U^{n+\mu} R \quad \text { a.e. }
$$

The transformation on the right is the ergodic skew product trans-
formation $T \frac{(n+\mu) \gamma+q}{\mu}, \beta$ with β-function which has the form $\beta: x$ $\rightarrow[n+\mu] x+d^{\prime}$ in which all the constants involved are lumped together in d^{\prime}. Here we note that $n+\mu \neq 0$. This follows from the ergodicity of $T \frac{(n+\mu) \gamma+q}{\mu}, \beta$. By the proper value criterion $\exp [2 \pi i \xi]$ is a proper value of $T_{r, \alpha}$ if and only if there exists an integer p and a realvalued measurable function $\theta(\cdot)$ on X such that

$$
\xi-p(\mu x+\delta)=\theta(x+\gamma)-\theta(x) \quad(\operatorname{modulo} 1) \quad \text { a.e. }
$$

This implies that $\exp [2 \pi i \theta(\cdot)]$ is a generalized proper function of $T_{r}: x \rightarrow x+\gamma$ (modulo 1) on X, whence the same argument as in the proof of [1, Proposition 1, p. 9] demonstrates that $\exp [2 \pi i \theta(x)]$ $=\exp [2 \pi i(m x+c)]$ a.e. for some integer m and real constant c. Thus $\xi-p(\mu x+\delta)=m \gamma$ (modulo 1) a.e. and so $p=0$. It follows that $\{\exp [2 \pi i m \gamma] \mid m$ is an integer $\}$ is the proper values of $T_{r, \alpha}$. The same argument as the above implies that $\left\{\left.\exp \left[2 \pi i m \cdot \frac{(n+\mu) \gamma+q}{\mu}\right] \right\rvert\, m\right.$ is an integer $\}$ is the proper values of $T \frac{(n+\mu) \gamma+q}{\mu}, \beta$. Since $T_{r, \alpha}$ and $T \frac{(n+\mu) \gamma+q}{\mu}, \beta$ are spatially isomorphic the proper values of $T_{r, \alpha}$ coincide with the proper values of $T \frac{(n+\mu) \gamma+q}{\mu}, \beta$ from which it follows that

$$
q=0, \text { and }(n+\mu) / \mu=1 \text { or }-1
$$

Let $(n+\mu) / \mu=1$, i.e., $n=0$. Then $S T_{r, \alpha} S^{-1}$ almost everywhere is of the form

$$
S T_{r, \alpha} S^{-1}:(x, y) \rightarrow\left(x+\gamma, y+\mu x+d^{\prime}\right)
$$

(additions modulo 1). By the spatially isomorphism criterion S almost everywhere is of the form
(i) $S:(x, y) \rightarrow(x+u, y+\theta(x))$
(additions modulo 1) where

$$
\mu(x+u)+d^{\prime}-(\mu x+\delta)=\theta(x+\gamma)-\theta(x) \quad(\text { modulo 1) } \quad \text { a.e. }
$$

or
(ii) $S:(x, y) \rightarrow(x+u,-y+\theta(x))$
(additions modulo 1) where

$$
\mu(x+u)+d^{\prime}+(\mu x+\delta)=\theta(x+\gamma)-\theta(x) \quad(\text { modulo 1) a.e. }
$$

In either case the argument of generalized proper functions assures that $\theta(x)=k x+c$ (modulo 1) a.e. for some integer k and real constant c, from which it follows that case (ii) is impossible.

Next let $(n+\mu) / \mu=-1$, i.e., $n=-2 \mu$. Then $S T_{r, \alpha} S^{-1}$ almost everywhere is of the form

$$
S T_{r, \alpha} S^{-1}:(x, y) \rightarrow\left(x-\gamma, y-\mu x+d^{\prime}\right)
$$

(additions modulo 1). If Q denote the transformation on H which is defined by $(x, y) \rightarrow(-x,-y)$ then $Q S T_{r, \alpha} S^{-1} Q^{-1}$ almost everywhere is of the form

$$
Q S T_{\gamma, \alpha} S^{-1} Q^{-1}:(x, y) \rightarrow\left(x+\gamma, y-\mu x-d^{\prime}\right)
$$

(additions modulo 1). Therefore the spatial isomorphism criterion can be applied to $Q S$ and we see that $Q S$ almost everywhere is of the form
(iii) $Q S:(x, y) \rightarrow(x+u, y+\theta(x))$
(additions modulo 1) where $-\mu(x+u)-d^{\prime}-(\mu x+\delta)=\theta(x+\gamma)-\theta(x)$ (modulo 1) a.e. or
(iv) $Q S:(x, y) \rightarrow(x+u,-y+\theta(x))$
(additions modulo 1) where $-\mu(x+u)-d^{\prime}+(\mu x+\delta)=\theta(x+\gamma)-\theta(x)$ (modulo 1) a.e.

The same argument used in the case $(n+\mu) / \mu=1$ demonstrates that case (iii) is impossible and that in case (iv) $Q S$ almost everywhere is of the form $Q S:(x, y) \rightarrow(x+u,-y+k x+c)$ (additions modulo 1), whence S almost everywhere is of the form $S:(x, y) \rightarrow(-x-u, y-k x$ $-c$) (additions modulo 1).

Conversely if S almost everywhere is of the form

$$
S:(x, y) \rightarrow(\varepsilon x+u, y+k x+c)
$$

(additions modulo 1) then $S T_{r, \alpha} S^{-1} T_{r, \alpha}^{-1}$ almost everywhere is of the form

$$
S T_{\gamma, \alpha} S^{-1} T_{\gamma, \alpha}^{-1}:(x, y) \rightarrow\left(x+[\varepsilon-1] \gamma, y+[\varepsilon-1] \mu x+c^{\prime}\right)
$$

(additions modulo 1). Proposition 1 implies now $S \in C_{2}\left(T_{r, \alpha}\right)$. This completes the proof.

Proposition 3. $S \in C_{3}\left(T_{r, \alpha}\right)$ if and only if S almost everywhere is of the form

$$
S:(x, y) \rightarrow\left(\varepsilon_{1} x+u, \varepsilon_{2} y+k x+c\right)
$$

(additions modulo 1) where ε_{1} and ε_{2} equal 1 or -1 , respectively, k is an integer, u and c are real constants.

It is easily seen that the same argument used in the proof of Proposition 2 can be applied in order to prove Proposition 3. Thus we omit the proof here.

Proposition 4. $\quad C_{4}\left(T_{r, \alpha}\right)=C_{3}\left(T_{r, \alpha}\right)$, i.e., $N\left(T_{r, \alpha}\right)=3$.
Proof. Let $S \in C_{4}\left(T_{r, \alpha}\right)$. Then $S_{3}=S T_{r, \alpha} S^{-1} T_{r, \alpha}^{-1}$ almost everywhere is of the form $S_{3}:(x, y) \rightarrow\left(\varepsilon_{1} x+u, \varepsilon_{2} y+k x+d\right)$ (additions modulo 1), whence $S T_{r, \alpha} S^{-1}=S_{3} T_{r, \alpha}$ almost everywhere is of the form

$$
S T_{r, \alpha} S^{-1}:(x, y) \rightarrow\left(\varepsilon_{1} x+u_{1}, \varepsilon_{2} y+k_{1} x+d_{1}\right)
$$

(additions modulo 1) where k_{1} is some integer and u_{1}, d_{1} real constants. Thus $S T_{r, \alpha}^{2} S^{-1}$ almost everywhere is of the form

$$
S T_{r, \alpha}{ }^{2} S^{-1}:(x, y) \rightarrow\left(x+\left[\varepsilon_{1}+1\right] u_{1}, y+\left[\varepsilon_{1}+\varepsilon_{2}\right] k_{1} x+d_{2}\right)
$$

(additions modulo 1) where d_{2} is some real constant. Since $T_{r, \alpha}$ is to-
tally ergodic and has quasi-discrete spectrum of order 2, it follows that $\varepsilon_{1}+1 \neq 0$ and $\varepsilon_{1}+\varepsilon_{2} \neq 0$, in other words, $\varepsilon_{1}=\varepsilon_{2}=1$. This together with Proposition 2 implies now that $S_{3}=S T_{r, \alpha} S^{-1} T_{r, \alpha}^{-1}$ belongs to $C_{2}\left(T_{r, \alpha}\right)$. Therefore S belongs to $C_{3}\left(T_{r, \alpha}\right)$. This completes the proof.

Remark. Let (M, Σ, m) be a non-atomic Lebesgue space (see [4]) with $m(M)=1$. Then it is known that if $T \in \oiint$ is totally ergodic and has quasi-discrete spectrum of order 1 then $N(T)=2$ (see [1]). However I do not know whether if $T \in \mathbb{S}$ is totally ergodic and has quasidiscrete spectrum of order 2 then $N(T)=3$.

Acknowledgement. I wish to express my deep appreciation to Professor S. Tsurumi for variable discussions concerning this problem.

References

[1] R.L. Adler: Generalized commuting properties of measure-preserving transformations. Trans. Amer. Math. Soc., 115, 1-13 (1965).
[2] H. Anzai: Ergodic skew product transformations on the torus. Osaka Math. J., 3, 83-99 (1951).
[3] N. Dinculeanu and C. Foias: Algebraic models for measure preserving transformations. Trans. Amer. Math. Soc., 134, 215-237 (1968).
[4] V. A. Rohlin: On the fundamental ideas of measure theory. Amer. Math. Soc. Translations, Series 1, 10, 1-54 (1962).

