79. Generalizations of M-spaces. II

By Takesi ISIWATA

(Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1969)

In the previous paper [4] we obtained a characterization of M'-spaces as a generalization of M-spaces and Morita's paracompactification of M'-spaces. In this paper we shall give necessary and sufficient conditions for an M'-space to be M-space and show that the product space of M'-spaces need not be an M'-space and that the property of being M'-space is not necessarily invariant under a perfect mapping (see [2] or [4] for terminologies and notations).

1. Relation between M'. and M-spaces.

A space X is a *cb-space* (resp. *weak cb-space*) if given a decreasing sequence $\{F_n\}$ of closed sets (resp. regular-closed sets) of X with empty intersection, there exists a sequence $\{Z_n\}$ of zero sets with empty intersection such that $F_n \subset Z_n$ for each n where a subset F is regular-closed if cl (int F)=F.

Lemma 1.1. The following results has been obtained in ([5], [6]).

1) X is a cb-space if and only if X is both countably paracompact and week cb.

2) For a pseudocompact space X the followings are equivalent:
i) X is a cb-space, ii) X is countably compact and iii) X is countably paracompact.

3) A countably compact space is a cb-space.

4) A pseudocompact space is a weak cb-space.

The following lemma is obvious.

Lemma 1.2. If $\{U_n\}$ is a decreasing sequence of open sets of X such that $\cap \overline{U}_n = \emptyset$, then

1) there exists a locally finite discrete collection $\{V_n\}$ of open sets of X such that $\bar{V}_n \subset U_n$ and $\bar{V}_n \cap \bar{V}_m = \emptyset$ $(n \neq m)$,

2) there exists a non-negative continuous function f on X such that f=0 on $X-\cup V_n$, $0 \le f \le n$ on V_n and $f(x_n)=n$ for some point x_n of V_n , and

3) $\{Z_n; Z_n = \{x; f(x) \ge n\}\}$ is a decreasing sequence of zero sets of X with empty intersection.

Theorem 1.3. An M'-space is a weak cb-space.

Proof. Let φ be an SZ-mapping from an M'-space X onto a metric space Y and $\{\mathfrak{B}_i; i \in N\}$ be a normal sequence of open covering of Y such that $\{\mathrm{St}(y, \mathfrak{B}_i); i \in N\}$ is a basis of neighborhoods at each point y

of Y. Let us put $\mathfrak{U}_i = \varphi^{-1}\mathfrak{B}_i$ $(i \in N)$. Then $\{\mathfrak{U}_i ; i \in N\}$ satisfies the condition (\mathbf{M}') (cf. Theorem 6.1 in [7]). Now suppose that X is not weak cb, then there exists a decreasing sequence $\{F_i\}$ of regular-closed sets of X with empty intersection such that any sequence $\{Z_i\}$ of zero sets of X with $F_i \subset Z_i$ has a non-empty intersection. Since $\overline{\varphi(F_i)}$ is a zero set of Y, so is $\varphi^{-1}\overline{\varphi(F_i)}$. $F_i \subset \varphi^{-1}\overline{\varphi(F_i)}$ and there is a point x_0 such that $x_0 \in \cap \varphi^{-1}\overline{\varphi(F_i)}$ by the assumption. $y_0 = \varphi(x_0) \in \overline{\varphi(F_i)}$ and $\mathrm{St}(y_0, \mathfrak{B}_i) \cap \varphi(F_i) \neq \emptyset$. This implies that $U_i = \mathrm{St}(x_0, \mathfrak{U}_i) \cap \mathrm{int} F_i \neq \emptyset$ because each F_i is regular-closed. Since $\cap F_i = \emptyset$, we have $\cap \overline{U}_i = \emptyset$. By Lemma 2 there exists a decreasing sequence $\{Z_i\}$ of zero sets such that $Z_i \subset \bigcup\{V_m; m \geq i\} \subset \mathrm{St}(x_0, \mathfrak{U}_i)$ and $\bigcap Z_i = \emptyset$. On the other hand $\{\mathfrak{U}_i; i \in N\}$ satisfies the condition (\mathbf{M}') and we have $\bigcap Z_i \neq \emptyset$. This is a contradiction, that is, X is a weak cb-space.

Lemma 1.4. If X is countably paracompact and F is a relatively pseudocompact closed subset of X, then F is countably compact.

Proof. Suppose that $\{x_n; n \in N\}$ is a sequence of points of F which has no accumulation points. $A_n = \{x_m; m \ge n\}$ is closed and $\bigcap A_n = \emptyset$. By the countable paracompactness there is a decreasing sequence $\{U_n\}$ of open sets such that $\bigcap \overline{U}_n = \emptyset$ and $x_n \in A_n \subset U_n$. Using (3) of Lemma 3.2 there exists a continuous function f on X such that $f(x_n) = n$ which contradicts the relatively pseudocompactness of F. Thus F must be countably compact.

Since an almost realcompact weak cb-space is realcompact (Theorem 1.2 in [1]), we have

Corollary 1.5. If an M'-space is almost realcompact, then it is realcompact.

From Theorem 1.4, Corollary 1.5 and Corollary 1.3 in [4], it is easy to see that the following theorem is a generalization of (2) of Lemma 1.1.

Theorem 1.6. If X is an M'-space, then the followings are equivalent:

- 1) X is an M-space.
- 2) X is a cb-space.

3) X is countably paracompact.

Proof. 2) \leftrightarrow 3) follows from Theorem 1.3 and 1) of Lemma 1.1.

1) \rightarrow 2). Let φ be a quasi-perfect mapping from X onto a metric space Y and let $\{F_n\}$ be a decreasing sequence of closed sets of X with empty intersection. If $\bigcap \varphi(F_n) = \emptyset$, then there exists a sequence $\{Z'_n\}$ of zero sets of Y with $\bigcap Z'_n = \emptyset$. Thus $\{Z_n; Z_n = \varphi^{-1}(Z'_n)\}$ is a sequence of zero sets of X such that $\bigcap Z_n = \emptyset$. If $y_0 \in \bigcap \varphi(F_n)$, then $F_n \cap \varphi^{-1}(y_0) \neq \emptyset$ for each n. Since $\varphi^{-1}(y_0)$ is countably compact, and $\{F_n\}$ is decreasing, we have $\bigcap F_n \neq \emptyset$ which is impossible.

2) \rightarrow 1). Let φ be an SZ-mapping from X onto a metric space Y. By Lemma 1.4 it is sufficient to show that φ is closed. Let F be a closed subset of X and $y_0 \in \overline{\varphi(F)} - \varphi(F)$. Since Y is a metric space, there is a sequence $\{y_n\}$ which converges to y_0 and $y_n \in \varphi(F)$. B_n $=\{y_m; m \ge n\} \cup \{y_0\}$ is a zero set of Y and $\{A_n = F \cap \varphi^{-1}(B_n)\}$ is a decreasing sequence of closed sets of X with $\bigcap A_n = \emptyset$. Since X is a cb-space, there exists a sequence $\{Z_n\}$ of zero sets of X such that A_n $\subset Z_n$ and $\bigcap Z_n = \emptyset$. φ being a Z-mapping, we have $y_0 \in \overline{\varphi(A_n)} \subset \varphi(Z_n)$. This shows that $\varphi_0^{-1}(y_0) \cap Z_n \neq \emptyset$. $\varphi^{-1}(y_0)$ being countably compact, we have $\bigcap Z_n \neq \emptyset$ which is a contradiction.

Corollary 1.7. A pseudocompact M-space is countably compact. This follows from Theorem 1.6 and 2) of Lemma 1.1.

2. Examples. The following example shows that there exists an *M*-space X such that some subspace W of μX , containing X, is not necessarily an *M*-space.

Example 2.1. Let A be a space $\{1/n; n \in N\} \cup \{0\}$ with usual topology and ω_1 the first uncountable ordinal and $a_n = 1/2n$ $(n \in N)$.

1) $X = A \times W(\omega_1)$ is countably compact [2] and hence an *M*-space.

2) $W = A \times W(\omega_1 + 1) - \{(a_n, \omega_1); n \in N\} - \{(0, \omega_1)\}$ is pseudocompact but not countably compact. Thus W is an M_{δ} -space but not an M-space by Corollary 1.7.

3) $X \subset W \subset \mu X = \nu X = \beta X$ is obvious.

Theorem 2.2. If φ is an SZ-mapping from an M'-space X onto a topologically complete space Y, then Y is a paracompact M-space.

Proof. As is known $\Phi^{-1}Y$ is topologically complete and $\mu X \subset \Phi^{-1}(Y)$ by Theorem 2.5 in [4]. Let us put $\varphi_1 = \Phi | X$. Similarly to the proof of Theorem 2.5 in [4], φ_1 becomes a perfect mapping from μX onto Y. Thus Y must be a paracompact *M*-space by Lemma 2.3 in [4].

In Theorem 2.2 we can not drop the topological completeness of Y. Such an example is given in the following and it is an example showing that an image of M'-space under a perfect mapping need not be an M'space

Example 2.3. There exists a locally compact, non-normal, countably paracompact nonweak cb-space Y which is an image of an M-space under a perfect mapping (and hence Y is not an M'-space).

The example given here is a space constructed by K. Morita ([8], § 4) (an analogous example was given in § 3 in [6]). Let $S = W(\omega_1 + 1)$

 $W(\omega_1+1)-(\omega_1, \omega_1), P=\{(\alpha, \omega_1); \alpha < \omega_1\}$ and $Q=\{(\omega_1, \beta); \beta < \omega_1\}$. Let X be the topological sum of disjoint spaces S_n where for each $n \in N$, there is a homeomorphism φ_n of S onto S_n . Then X is non-normal, locally compact, countably paracompact *M*-space. Now we identify a point $\varphi_{2m-1}(p)$ with $\varphi_{2m}(p)$ for $p \in P$ and a point $\varphi_{2m}(q)$ with $\varphi_{2m+1}(q)$ for $q \in Q$. By this identification, we have an identification space Yand the identification mapping $\varphi; X \to Y$. It is obvious that φ is perfect. Thus Y is locally compact, non-normal and countably paracompact. If Y is an M'-space, then by Theorem 1.6 Y must be an Mspace. But it is shown by K. Morita that Y is not an M-space. Thus Y is not an M'-space. To show that Y is not a weak cb-space we put $F_n = \operatorname{cl}\left(Y - \varphi\left(\bigcup_{i=1}^n \varphi_i(S_i)\right)\right)$. Then $\{F_n\}$ is a decreasing sequence of regular closed-sets of Y. Similarly to Morita's example [8] it is proved that there are no sequence $\{Z_n\}$ of zero sets of Y such that $F_n \subset Z_n$ for each $n \in N$ and $\bigcap Z_n = \emptyset$.

The following example shows that a product of M'-spaces need not be an M'-space.

Example 2.4. In [3], we proved the following theorem: Suppose that X is not pseudocompact and P and Q are disjoint non-empty subset of $\beta X - X$. If $X \cup P$ and $X \cup Q$ are countably compact, then $A \times B$ is not an M-space where $A = X \cup P \cup \{x^*\}$, $B = X \cup Q \cup \{x^*\}$ and x^* is an arbitrary point contained in $\beta X - vX$. If X = N and we take both subsets P and Q such that $\beta N - N = P \cup Q$, $P \cap Q = \emptyset$ and both subspace $N \cup P$ and $N \cup Q$ are countably compact as in [9] (or, see [3]) then the set K_n constructed in the proof of Theorem 1 in [3] is openclosed and hence it is a zero set. Since the sequence $\{K_n\}$ has a empty total intersection, this shows that the condition (M') does not hold and hence $A \times B$ is not an M'-space.

References

- [1] N. Dykes: Mappings and realcompact spaces (to appear).
- [2] L. Gillman and M. Jerison: Rings of continuous functions. Van Norstrand Princeton, N. J. (1960).
- [3] T. Isiwata: The product of M-spaces need not be an M-space. Proc. Japan Acad., 45, 154-156 (1969).
- [4] ——: Generalizations of *M*-spaces. I. Proc. Japan Acad., 45, 359-363 (1969).
- [5] J. Mack: On a class of countably paracompact spaces. Proc. Amer. Math. Soc., 16, 467-472 (1965).
- [6] J. E. Mack and D. G. Johnson: The Dedekind completion of C(X). Pacific Journ. Math., 20, 231-243 (1967).
- [7] K. Morita: Product of normal spaces with metric spaces. Math. Ann., 154, 365-382 (1964).
- [8] ----: Some properties of M-spaces. Proc. Japan Acad., 43, 869-872 (1967).
- [9] J. Novák: On the cartesian product of two compact spaces. Fund. Math., 40, 106-112 (1953).