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1. Introduction and theorems.
1.1. Let f be an even integrable function, with period 27r and its

Fourier series be

( 1 ) f(x)N an cos nx.
n=l

R. Mohanty [1] has proved the following

Theorem I. If (I, 1) the function log (27r/t)f(t) is of bounded
variation on the interval (0, zr) and (I, 2) the sequence (n’an) is of
bounded variation for a O, then , a < c.

Later one of us [2] proved

Theorem II. If (II, 1) f is of bounded variation and .If log (27r/t)

Idf(t) l< c and (II, 2) the sequence (n’A(nan)) is of bounded variation

for a > 0, then a < c.

Recently R.M. Mazhar [3] has proved

Theorem III. If the condition (II, 1) is satisfied and (III, 2) the
sequence

e-" e"a (n--l, 2,...)

is of bounded variation for an c, 0< c< 1, then lan < c.

The conditions (I, 1) and (II, 1) are mutually exclusive and (I, 2)
and (II, 2) are also. The condition (HI, 2) is weaker than (H, 2) ([3],
Lemma 2) and then Theorem III is a generalization of Theorem II.

1.2. Our object of this paper is partly to prove Theorem I with-
out using Tauberian theorem and partly to generalize the condition
(I, 1)as Theorem III, namely:

Theorem 1. Suppose that the sequence (m) is positive and
increasing and satisfies the following conditions:
( 2 ) m+l/m<A, M/m<=Ak- for an e,
where M=ml+m2+... +m and there is an integer p such that
3 ) IzlP-(MA(1/m))I <=A/] for all

If (1, 1) f is of bounded variation and .[i log (27r/t) ldf(t)l < oo and (1, 2)

the sequence
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M m(ka) (n- 1, 2, ...)

is of bounded variation, then a c.

Theorem 2. The condition (1, 1) in Theorem 1 can be replaced
by the condition (I, 1).

For the proof o Theorems I and 2, we use the method in [2].
The sequence m=e", 1--(a1, satisfies the conditions (2) and

(3), with p 1/(1 a).
2. Proof of Theorem 1.

2.1. By (1), a----2 f(t) cos nt dt and then

----an ----1 sin nt df(t)---l :/n’ +--12 n n n

where ’- is taken such that n-’ is an even integer and
being a small positive number (e/(p-1), as no. We write

(4) 2 $=1 [an[ $=t n ]f: sin nt df(t)
1 ]+ $]/,,]_p+Q,

then we have

[df(t)
n=l n

A ]df(t) A ]df(t)]logk
k=l Jr/(k+l) n=l n k=l Jr/(k+l)

log Idf(t) -A log --Idf(t)[

by the condition (1, 1). It remains to prove that Q is finite.
2.2. By (1) and the assumption (1, 1),

df(t) k a sin kt.

Since sin nt vanishes at the poin t /n’, the ollowing Parseval
ormula [4] holds:

( 6 ) - sin t gf(t)- a sin t sin
/ /

Pot the sake of simplicity, we ut 8=/’, then, by Abel’s lemma,

7 -- (a)m - sin t sin t gt

A. A sin t sin t gt

where A--m, since, for any fixed ,
Jl
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A.. sin n sin kt dt < A , ]am
--A s 1 s((] + 1)m+--]m)km .=

s being the kth partial sum of the series a.
again, (7) becomes

(8)

0 as

Using Abel’s lemma

Q- M. A sin nt sin kt dt

--a M.A\ m sinnt sin jt

--A A M.A sintsin#gt
j=k+l mj n

By Abel’s lemma,

(15) T,N,--

as N--c.

(N +_ I)I_-_MN sin nt sin Nt dt
mN+l n, A sin nt sin (] + 1)t dt

y=N mj+ an

(N’ + 1)-M, sin t sin (N’ + 1)t gt
m/,+l

Similarly,

(14) ’ M/ A 1 <A ,..f+:--OIS+,,l _<_A
}’+j=N j=

In order to see this, we have to prove that

(9) M.A sin nt sin ]t dt 0 as
mj n

or fixed n, which is proved when the series

(10) M. A sin t sin # dt
=1 mj

is convergent for each fixed n. For this purpose we shall prove that

(11) A(I_) M sin t sin # dt
j=N mj

N’

+ (j + 1)’-M. (1/) sin sin

+ (JlM sin (sin #--sin

R,, +S,, + T,,0 as N N.
e can suppose N. Since is even multiple

(12) sin sin # d sin

and then, by (2),

(13) RN,,[ gA gA 0. as N.
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and then, by (2),

(16) TN,N, <-- AM /A
]+m#+

+ + M# d
N+mv+

+ m+
+ AM, 0 as N.

(N’)+m,+
By (11), (13), (14) and (16), the series (10) is convergent, and then the
formula (8) holds.

2.. By (4), (6) and (8)

sin nt sin it d$
n= =t

+A , , , M,. sin nt sin ]t dt

By the assumption (1, 2),

(17) QGA max 1
1K_I<oo n=l n

Since

= M.d- sin nt sin yt

max 1 d(]_O Ms TM

sin nt sin ]t dt
1< n=l n m n

(] + I)-aMj. d I sin nt sin jt dt

my+l n

max (R +S+ T,).

sin nt cos (]+_l/2)tdt < A
2 sin t/2 =Snlj-n-+-l/2]’

we have, by (2) and Abel’s transformation,
(19)

=1 n

n=l

=A logk

=A logk

j/ d(]l_3) M sin nt
m 2sint/2

z/(/c_) M__A sin nt cos (k--1/2)t dt
m .2sint/2

A A(]I-)M sin t
m/ 2sint/2

(cos (]-- 1 2) cos(] + 1 2)t)dt

cos (j + 1 /2) dt

n+l/21
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By (2), (3), (17) and (p-l) time use of Abel’s lemma,

(20) S= 1 , (]+I)t_M,A 1

sin nt (cos (]-- 1 2)t-- cos(] + 1 2)t)dt
2t/2
10. -(P-’)"

log (M 1 () 1 (1))m+gA k+A + -M + -m+A
log] A,_( 1)I_MA( 1 ))+A (]+

Similarly, by (2), (3), (17) and p time use of Abel’s lemma,

m k
+A k-A +A(

10g +A (- m+//=
A+A k--Collecting (17), (19), (20) and (21), we get QA, which proves the

theorem with (4) and (5).
3. Proof of Theorem 2.

It is sufficient to prove that P in the section 2.1 is finite under the

condition (I, 1). Putting g(t)=log 2yf(t), we get, by integration by

parts,
cossin n d f()- cos n f() d

n log
t

(r/’) cos d+
log 2 log 2

1 /’ sin ,".(/’)
Thus we have

since

A
n(log n)

A I/"’ Idg(t)+-- 2rn.o log

sin nu In I rln$’
du- +

g/n

g(t)dt
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by the mean value theorem, and then

n(log n) + A

Thus we get Theorem 2.

dg(t)

log 2
t
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