75. Absolute Convergence of Fourier Series

By Masako Izumi and Shin-ichi Izumi
Department of Mathematics, The Australian National
University, Canberra, Australia
(Comm. by Zyoiti Suetuna, m. J. A., May 12, 1969)

1. Introduction and theorems.

1.1. Let f be an even integrable function, with period 2π and its Fourier series be

$$
\begin{equation*}
f(x) \sim \sum_{n=1}^{\infty} a_{n} \cos n x \tag{1}
\end{equation*}
$$

R. Mohanty [1] has proved the following

Theorem I. If $(I, 1)$ the function $\log (2 \pi / t) f(t)$ is of bounded variation on the interval $(0, \pi)$ and $(I, 2)$ the sequence $\left(n^{3} a_{n}\right)$ is of bounded variation for a $\delta>0$, then $\sum\left|a_{n}\right|<\infty$.

Later one of us [2] proved
Theorem II. If $(I I, 1) f$ is of bounded variation and $\int_{0}^{\pi} \log (2 \pi / t)$ $\cdot|d f(t)|<\infty$ and $(I I, 2)$ the sequence $\left(n^{\delta} \Delta\left(n a_{n}\right)\right)$ is of bounded variation for $a \delta>0$, then $\sum\left|a_{n}\right|<\infty$.

Recently R.M. Mazhar [3] has proved
Theorem III. If the condition $(I I, 1)$ is satisfied and $(I I I, 2)$ the sequence

$$
e^{-n^{\alpha}} \sum_{m=1}^{n} e^{m^{\alpha}} a_{m} \quad(n=1,2, \cdots)
$$

is of bounded variation for an $\alpha, 0<\alpha<1$, then $\sum\left|a_{n}\right|<\infty$.
The conditions ($I, 1$) and ($I I, 1$) are mutually exclusive and ($I, 2$) and $(I I, 2)$ are also. The condition $(I I I, 2)$ is weaker than $(I I, 2)$ ([3], Lemma 2) and then Theorem III is a generalization of Theorem II.
1.2. Our object of this paper is partly to prove Theorem I without using Tauberian theorem and partly to generalize the condition ($I, 1$) as Theorem III, namely :

Theorem 1. Suppose that the sequence $\left(m_{k}\right)$ is positive and increasing and satisfies the following conditions:

$$
\begin{equation*}
m_{k+1} / m_{k} \leqq A, M_{k} / m_{k} \leqq A k^{\delta-\varepsilon} \quad \text { for an } \varepsilon, 0<\varepsilon<\delta<1 \text {, } \tag{2}
\end{equation*}
$$ where $M_{k}=m_{1}+m_{2}+\cdots+m_{k}$ and there is an integer p such that

$$
\begin{equation*}
\left|\Delta^{p-1}\left(M_{j} \Delta\left(1 / m_{j}\right)\right)\right| \leqq A / j \quad \text { for all } j>1 \tag{3}
\end{equation*}
$$

If $(1,1) f$ is of bounded variation and $\int_{0}^{\pi} \log (2 \pi / t)|d f(t)|<\infty$ and $(1,2)$ the sequence

$$
M_{n}^{-1} \sum_{k=1}^{n} m_{k}\left(k^{\delta} a_{k}\right) \quad(n=1,2, \cdots)
$$

is of bounded variation, then $\sum\left|a_{k}\right|<\infty$.
Theorem 2. The condition $(1,1)$ in Theorem 1 can be replaced by the condition $(I, 1)$.

For the proof of Theorems 1 and 2, we use the method in [2].
The sequence $m_{k}=e^{k^{\alpha}}, 1-\delta<\alpha<1$, satisfies the conditions (2) and (3), with $p \geqq 1 /(1-\alpha)$.
2. Proof of Theorem 1.
2.1. $\operatorname{By}(1), a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos n t d t$ and then

$$
-\frac{\pi}{2} a_{n}=\frac{1}{n} \int_{0}^{\pi} \sin n t d f(t)=\frac{1}{n} \int_{0}^{\pi / n \delta^{\delta^{\prime}}}+\frac{1}{n} \int_{\pi / n^{\delta^{\prime}}}^{\pi},
$$

where $\delta^{\prime}=\delta_{n}^{\prime}$ is taken such that $n^{1-\delta^{\prime}}$ is an even integer and $\delta_{n}^{\prime} \rightarrow \sigma, \sigma$ being a small positive number $<\varepsilon /(p-1)$, as $n \rightarrow \infty$. We write

$$
\begin{align*}
\frac{\pi}{2} \sum_{n=1}^{\infty}\left|a_{n}\right| & =\sum_{n=1}^{\infty} \frac{1}{n}\left|\int_{0}^{\pi} \sin n t d f(t)\right| \tag{4}\\
& \leqq \sum_{n=1}^{\infty} \frac{1}{n}\left|\int_{0}^{\pi / n \delta^{\prime}}\right|+\sum_{n=1}^{\infty} \frac{1}{n}\left|\int_{\pi / n \delta^{\prime}}^{\pi}\right|=P+Q
\end{align*}
$$

then we have

$$
\begin{align*}
P & \leqq \sum_{n=1}^{\infty} \frac{1}{n} \int_{0}^{\pi / n n^{\prime}}|d f(t)| \leqq \sum_{n=1}^{\infty} \frac{1}{n} \sum_{k=\left[n^{\left.\delta^{\prime}\right]}\right.}^{\infty} \int_{\pi /(k+1)}^{\pi / k}|d f(t)| \tag{5}\\
& \leqq A \sum_{k=1}^{\infty} \int_{\pi /(k+1)}^{\pi / k}|d f(t)| \sum_{n=1}^{[k / 2 / \sigma} \frac{1}{n} \leqq A \sum_{k=1}^{\infty} \int_{\pi /(k+1)}^{\pi / k}|d f(t)| \log k \\
& \leqq A \sum_{k=1}^{\infty} \int_{\pi /(k+1)}^{\pi / k} \log \frac{2 \pi}{t}|d f(t)|=A \int_{0}^{\pi} \log \frac{2 \pi}{t}|d f(t)|<\infty
\end{align*}
$$

by the condition (1,1). It remains to prove that Q is finite.
2.2. By (1) and the assumption (1,1),

$$
d f(t) \sim \sum_{k=1}^{\infty} k a_{k} \sin k t .
$$

Since $\sin n t$ vanishes at the point $t=\pi / n^{\delta^{\prime}}$, the following Parseval formula [4] holds :

$$
\begin{equation*}
Q_{n}=\int_{\pi / n \delta^{\prime}}^{\pi} \sin n t d f(t)=\sum_{k=1}^{\infty} k a_{k} \int_{\pi / n \delta^{\prime}}^{\pi} \sin n t \sin k t d t \tag{6}
\end{equation*}
$$

For the sake of simplicity, we put $\delta_{n}=\pi / n^{\delta^{\prime}}$, then, by Abel's lemma,

$$
\begin{align*}
Q_{n} & =\sum_{k=1}^{\infty}\left(k^{\delta} a_{k}\right) m_{k} \cdot \frac{k^{1-\delta}}{m_{k}} \int_{\delta_{n}}^{\pi} \sin n t \sin k t d t \tag{7}\\
& =\sum_{k=1}^{\infty} A_{k} \cdot \Delta\left(\frac{k^{1-\delta}}{m_{k}} \int_{\delta_{n}}^{\pi} \sin n t \sin k t d t\right),
\end{align*}
$$

where $A_{k}=\sum_{j=1}^{k} j^{\delta} a_{j} m_{j}$, since, for any fixed n,

$$
\begin{aligned}
& \left|A_{k} \cdot \frac{k^{1-\delta}}{m_{k}} \int_{\delta_{n}}^{\pi} \sin n t \sin k t d t\right| \leqq \frac{A}{k^{\delta} m_{k}}\left|\sum_{j=1}^{k} j^{\delta} a_{j} m_{j}\right| \\
& \quad=A\left|s_{k}-\frac{1}{k^{\delta} m_{k}} \sum_{j=1}^{k-1} s_{j}\left((j+1)^{\delta} m_{j+1}-j^{\delta} m_{j}\right)\right| \rightarrow 0 \quad \text { as } k \rightarrow \infty,
\end{aligned}
$$

s_{k} being the k th partial sum of the series $\sum a_{j}$. Using Abel's lemma again, (7) becomes

$$
\begin{align*}
Q_{n}= & \sum_{k=1}^{\infty} \frac{A_{k}}{M_{k}} M_{k} \cdot \Delta\left(\frac{k^{1-\delta}}{m_{k}} \int_{\delta_{n}}^{\pi} \sin n t \sin k t d t\right) \tag{8}\\
= & a_{1} \sum_{j=1}^{\infty} M_{j} \cdot \Delta\left(\frac{j^{1-\delta}}{m_{j}} \int_{\delta_{n}}^{\pi} \sin n t \sin j t d t\right) \\
& -\sum_{k=1}^{\infty} \Delta\left(\frac{A_{k}}{M_{k}}\right) \sum_{j=k+1}^{\infty} M_{j} \cdot \Delta\left(\frac{j^{1-\delta}}{m_{j}} \int_{\delta_{n}}^{\pi} \sin n t \sin j t d t\right) .
\end{align*}
$$

In order to see this, we have to prove that

$$
\begin{equation*}
\frac{A_{k}}{M_{k}} \sum_{j=k+1}^{\infty} M_{j} \cdot \Delta\left(\frac{j^{1-\delta}}{m_{j}} \int_{\delta_{n}}^{\pi} \sin n t \sin j t d t\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty \tag{9}
\end{equation*}
$$

for fixed n, which is proved when the series

$$
\begin{equation*}
\sum_{j=1}^{\infty} M_{j} \cdot \Delta\left(\frac{j^{1-\delta}}{m_{j}} \int_{\delta_{n}}^{\pi} \sin n t \sin j t d t\right) \tag{10}
\end{equation*}
$$

is convergent for each fixed n. For this purpose we shall prove that

$$
\begin{align*}
& \sum_{j=N}^{N^{\prime}} \Delta\left(j^{1-\delta}\right) \frac{M_{j}}{m_{j}} \int_{\delta_{n}}^{\pi} \sin n t \sin j t d t \tag{11}\\
& \quad+\sum_{j=N}^{N^{\prime}}(j+1)^{1-\delta} M_{j} \cdot \Delta\left(1 / m_{j}\right) \int_{\delta_{n}}^{\pi} \sin n t \sin j t d t \\
& \quad+\sum_{j=N}^{N^{\prime}} \frac{(j+1)^{1-\delta} M_{j}}{m_{j+1}} \int_{\delta_{n}}^{\pi} \sin n t(\sin j t-\sin (j+1) t) d t \\
& = \\
& R_{N, N^{\prime}}+S_{N, N^{\prime}}+T_{N, N^{\prime}} \rightarrow 0 \quad \text { as } N^{\prime}>N \rightarrow \infty
\end{align*}
$$

We can suppose $N>n$. Since $n \delta_{n}$ is even multiple of π,

$$
\begin{equation*}
\int_{\delta_{n}}^{\pi} \sin n t \sin j t d t=-\frac{n \sin j \delta_{n}}{(j-n)(j+n)} \tag{12}
\end{equation*}
$$

and then, by (2),

$$
\begin{equation*}
\left|R_{N, N^{\prime}}\right| \leqq A \sum_{j=N}^{N^{\prime}} \frac{M_{j}}{j^{2+\delta} m_{j}} \leqq A \sum_{j=N}^{\infty} \frac{1}{j^{2+\varepsilon}} \rightarrow 0 \quad \text { as } N \rightarrow \infty \tag{13}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left|S_{N, N^{\prime}}\right| \leqq A \sum_{j=N}^{N^{\prime}} \frac{M_{j}}{j^{1+\delta}} \Delta\left(\frac{1}{m_{j}}\right) \leqq A \sum_{j=N}^{\infty} \frac{1}{j^{1+\varepsilon}} \rightarrow 0 \quad \text { as } N \rightarrow \infty \tag{14}
\end{equation*}
$$

By Abel's lemma,

$$
\begin{align*}
T_{N, N^{\prime}} & =\frac{(N+1)^{1-\delta} M_{N}}{m_{N+1}} \int_{\delta_{n}}^{\pi} \sin n t \sin N t d t \tag{15}\\
& -\sum_{j=N}^{N^{\prime}-1} \Delta\left(\frac{(j+1)^{1-\delta} M_{j}}{m_{j+1}}\right) \int_{\delta_{n}}^{\pi} \sin n t \sin (j+1) t d t \\
& -\frac{\left(N^{\prime}+1\right)^{1-\delta} M_{N^{\prime}}}{m_{N^{\prime}+1}} \int_{\delta_{n}}^{\pi} \sin n t \sin \left(N^{\prime}+1\right) t d t
\end{align*}
$$

and then, by (2),

$$
\begin{align*}
\left|T_{N, N^{\prime}}\right| \leqq & \frac{A M_{N}}{N^{1+\delta} m_{N+1}}+A \sum_{j=N}^{N^{\prime}}\left(\frac{M_{j}}{j^{2+\delta} m_{j+1}}+\frac{1}{j^{1+\delta}}+\frac{M_{j}}{j^{1+\delta}} \Delta\left(\frac{1}{m_{j+1}}\right)\right) \tag{16}\\
& +\frac{A M_{N^{\prime}}}{\left(N^{\prime}\right)^{1+\delta} m_{N^{\prime}+1}} \rightarrow 0 \quad \text { as } N \rightarrow \infty .
\end{align*}
$$

By (11), (13), (14) and (16), the series (10) is convergent, and then the formula (8) holds.
2.3. By (4), (6) and (8)

$$
\begin{aligned}
Q= & \sum_{n=1}^{\infty} \frac{1}{n}\left|Q_{n}\right| \leqq A \sum_{n=1}^{\infty} \frac{1}{n}\left|\sum_{j=1}^{\infty} M_{j} \cdot \Delta\left(\frac{j^{1-\delta}}{m_{j}} \int_{\delta_{n}}^{\pi} \sin n t \sin j t d t\right)\right| \\
& +A \sum_{k=1}^{\infty}\left|\Delta\left(\frac{A_{k}}{M_{k}}\right)\right| \sum_{n=1}^{\infty} \frac{1}{n}\left|\sum_{j=k+1}^{\infty} M_{j} \cdot \Delta\left(\frac{j^{1-\delta}}{m_{j}} \int_{\delta_{n}}^{\pi} \sin n t \sin j t d t\right)\right| .
\end{aligned}
$$

By the assumption (1,2),

$$
\begin{align*}
Q \leqq & A \max _{1 \leqq k<\infty} \sum_{n=1}^{\infty} \frac{1}{n}\left|\sum_{j=k}^{\infty} M_{j} \cdot \Delta\left(\frac{j^{1-\delta}}{m_{j}} \int_{\delta_{n}}^{\pi} \sin n t \sin j t d t\right)\right| \tag{17}\\
\leqq & A \max _{1 \leqq k<\infty} \sum_{n=1}^{\infty} \frac{1}{n}\left\{\left|\sum_{j=k}^{\infty} \Delta\left(j^{1-\delta}\right) \frac{M_{j}}{m_{j}} \int_{\delta_{n}}^{\pi} \sin n t \sin j t d t\right|\right. \\
& +\left|\sum_{j=k}^{\infty}(j+1)^{1-\delta} M_{j} \cdot \Delta\left(\frac{1}{m_{j}}\right) \int_{\delta_{n}}^{\pi} \sin n t \sin j t d t\right| \\
& \left.+\left|\sum_{j=k}^{\infty} \frac{(j+1)^{1-\delta} M_{j}}{m_{j+1}} \int_{\delta_{n}}^{\pi} \sin n t(\sin j t-\sin (j+1) t) d t\right|\right\} \\
\leqq & A \max _{1 \leqq k<\infty}\left(R_{k}+S_{k}+T_{k}\right) .
\end{align*}
$$

Since

$$
\begin{equation*}
\left|\int_{\delta_{n}}^{\pi} \frac{\sin n t \cos (j \pm 1 / 2) t}{2 \sin t / 2} d t\right| \leqq \frac{A}{\delta_{n}|j-n \pm 1 / 2|} \tag{18}
\end{equation*}
$$

we have, by (2) and Abel's transformation,

$$
\begin{align*}
& R_{k}= \sum_{n=1}^{\infty} \frac{1}{n}\left|\sum_{j=k}^{\infty} \Delta\left(j^{1-\delta}\right) \frac{M_{j}}{m_{j}} \int_{\delta_{n}}^{\pi} \frac{\sin n t}{2 \sin t / 2}(\cos (j-1 / 2)-\cos (j+1 / 2) t) d t\right| \tag{19}\\
&= \sum_{n=1}^{\infty} \frac{1}{n} \left\lvert\, \Delta\left(k^{1-\delta}\right) \frac{M_{k}}{m_{k}} \int_{\delta_{n}}^{\pi} \frac{\sin n t}{2 \sin t / 2} \cos (k-1 / 2) t d t\right. \\
& \left.\quad-\sum_{j=k}^{\infty} \Delta\left(\Delta\left(j^{1-\delta}\right) \frac{M_{j}}{m_{j}}\right) \int_{\delta_{n}}^{\pi} \frac{\sin n t}{2 \sin t / 2} \cos (j+1 / 2) t d t \right\rvert\, \\
& \leqq \sum_{n=1}^{\infty} \frac{A}{n}\left\{\left|\frac{M_{k}}{k^{\delta} m_{k}} \frac{1}{\delta_{n}|k-n-1 / 2|}\right|\right. \\
&\left.\quad+\left|\sum_{j=k}^{\infty}\left(\frac{M_{j}}{j^{1+\delta} m_{j}}+\frac{1}{j^{\delta}}+\frac{M_{j}}{j^{\delta}} \Delta\left(\frac{1}{m_{j}}\right)\right) \frac{1}{\delta_{n}|j-n+1 / 2|}\right|\right\} \\
&=A \frac{\log k}{k^{1+\varepsilon-\sigma}}+A \sum_{j=k}^{\infty} \frac{\log j}{j^{1-\sigma}}\left(\frac{1}{j^{1+\delta} j^{\varepsilon-\delta}}+\frac{1}{j^{\sigma}}+\frac{1}{j^{\delta} j^{-\delta \delta}}\right) \\
&=A \frac{\log k}{k^{1+\epsilon-\sigma}}+A \sum_{j=k}^{\infty} \frac{\log j}{j^{1+\varepsilon-\sigma}}=A \frac{\log k}{k^{1+\varepsilon-\sigma}}+A \frac{\log k}{k^{\varepsilon-\sigma}} \leqq A .
\end{align*}
$$

By (2), (3), (17) and ($p-1$) time use of Abel's lemma, (20) $\quad S_{k}=\sum_{n=1}^{\infty} \frac{1}{n} \left\lvert\, \sum_{j=k}^{\infty}(j+1)^{1-\delta} M_{\jmath} \Delta\left(\frac{1}{m_{j}}\right)\right.$

$$
\begin{aligned}
& \left.\cdot \int_{\delta_{n}}^{\pi} \frac{\sin n t}{2 \sin t / 2}(\cos (j-1 / 2) t-\cos (j+1 / 2) t) d t \right\rvert\, \\
\leqq & A \frac{\log k}{k^{s-\sigma}}+A \frac{\log k}{k^{1-(p-1) \sigma}}\left(\frac{M_{k}}{k^{\delta}}+k^{1-\delta} M_{k} \Delta^{2}\left(\frac{1}{m_{k}}\right)+k^{1-\delta} m_{k+1} \Delta\left(\frac{1}{m_{k+1}}\right)\right) \\
& +A \sum_{j=k}^{\infty} \frac{\log j}{j^{1-(p-1) \sigma}}\left|\Delta^{p-1}\left((j+1)^{1-\delta} M_{j} \Delta\left(\frac{1}{m_{j}}\right)\right)\right| \\
\leqq & A+A \sum_{j=k}^{\infty} \frac{\log j}{j^{1-(p-1) \sigma+\varepsilon}}+A \sum_{j=k}^{\infty} \frac{\log j}{j^{\delta-(p-1) \sigma}}\left|\Delta^{p-1}\left(M_{j} \Delta\left(\frac{1}{m_{j}}\right)\right)\right| \leqq A .
\end{aligned}
$$

Similarly, by (2), (3), (17) and p time use of Abel's lemma,
(21) $\quad T_{k} \leqq A \frac{M_{k}}{m_{k}} \frac{\log k}{k^{\delta}}+A\left(k^{1-\delta} \Delta\left(\frac{M_{k}}{m_{k}}\right)+\Delta\left(k^{1-\delta}\right) \frac{M_{k+1}}{m_{k+1}}\right) \frac{\log k}{k^{1-(p-1) \sigma}}$

$$
\begin{aligned}
& +A \sum_{j=k}^{\infty} \frac{\log j}{j^{\delta-(p-1) \sigma}} \Delta^{p}\left(\frac{M_{j}}{m_{j+1}}\right) \\
\leqq & A+A \frac{\log k}{k^{s-(p-1) \sigma}}+A \sum_{j=k}^{\infty} \frac{\log j}{j^{\delta-(p-1) \sigma}} \Delta^{p-1}\left(M_{j+1} \Delta\left(\frac{1}{m_{j+1}}\right)\right) \leqq A .
\end{aligned}
$$

Collecting (17), (19), (20) and (21), we get $Q \leqq A$, which proves the theorem with (4) and (5).

3. Proof of Theorem 2.

It is sufficient to prove that P in the section 2.1 is finite under the condition ($I, 1$). Putting $g(t)=\log \frac{2 \pi}{t} f(t)$, we get, by integration by parts,

$$
\begin{aligned}
P_{n} & =\frac{1}{n} \int_{0}^{\pi / n \delta^{\prime}} \sin n t d f(t)=-\int_{0}^{\pi / n \delta^{\delta^{\prime}}} \cos n t f(t) d t=-\int_{0}^{\pi / n \delta^{\prime}} \frac{\cos n t}{\log \frac{2 \pi}{t}} g(t) d t \\
& =-g\left(\pi / n^{\delta^{\prime}}\right) \int_{0}^{\pi / n n^{\delta^{\prime}}} \frac{\cos n u}{\log \frac{2 \pi}{u}} d u+\int_{0}^{\pi / n n^{\delta^{\prime}}}\left(\int_{0}^{t} \frac{\cos n u}{\log \frac{2 \pi}{u}} d u\right) d g(t) \\
& =-g\left(\pi / n^{\delta^{\prime}}\right) \frac{1}{n} \int_{0}^{\pi / n \delta^{\delta^{\prime}}} \frac{\sin n u}{u\left(\log \frac{2 \pi}{u}\right)^{2}} d u+\int_{0}^{\pi / n \delta^{\prime}}\left(\int_{0}^{t} \frac{\cos n u}{\log \frac{2 \pi}{u}} d u\right) d g(t)
\end{aligned}
$$

Thus we have

$$
\left|P_{n}\right| \leqq \frac{A}{n(\log n)^{2}}+\frac{A}{n} \int_{0}^{\pi / n \delta^{\delta^{\prime}}} \frac{|d g(t)|}{\log \frac{2 \pi}{t}}
$$

since

$$
\int_{0}^{\pi / n \delta^{\prime}} \frac{\sin n u}{u\left(\log \frac{2 \pi}{u}\right)^{2}} d u=\int_{0}^{\pi / n}+\int_{\pi / n}^{\pi / n \delta^{\prime}}=O\left(\frac{1}{(\log n)^{2}}\right)
$$

by the mean value theorem, and then

$$
\begin{aligned}
P & =\sum_{n=1}^{\infty}\left|P_{n}\right| \leqq A \sum_{n=2}^{\infty} \frac{1}{n(\log n)^{2}}+A \sum_{n=1}^{\infty} \frac{1}{n} \sum_{k=\left[n^{\prime}\right]}^{\infty} \int_{\pi /(k+1)}^{\pi / k} \frac{|d g(t)|}{\log \frac{2 \pi}{t}} \\
& \leqq A+\int_{0}^{\pi}|d g(t)|<A .
\end{aligned}
$$

Thus we get Theorem 2.

References

[1] R. Mohanty: A criterion for the absolute convergence of a Fourier series. Proc. London Math. Soc., 51 (2), 186-196 (1949).
[2] S. Izumi: Absolute convergence of some trigonometric series. II. Jour. of Math. Analysis and Applications, 1, 184-193 (1960).
[3] R. M. Mazhar: Absolute convergence of Fourier series. Proc. Japan Acad., 44, 756-761 (1968).
[4] A. Zygmund: Trigonometric Series. I. Cambridge Press (1959).

