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73. On Infinitesimal Automorphisms of Siegel Domains

By Noboru TANAKA
Department of Mathematics, Kyoto University, Kyoto

(Comm. by Zyoiti SUETUNA, M. J. A., May 12, 1969)

The aim of this note is to announce some theorems (Theorem 1-
Theorem 4) concerning the Lie algebra g of all infinitesimal auto-
morphisms of a Siegel domain D of second kind. Theorems 3 and 4
enable us to calculate, in an algebraic manner, the Lie algebra g on
the basis of the Lie algebra g, of all infinitesimal affine automorphisms
of D.

1. Let W% (resp. W) be a real (resp. complex) vector space of
finite dimension. We say that an open set V of W~?is a convex cone
in W-? if it satisfies the following conditions:

1) x+a/, ZzeV for any 2,2’ ¢ V and any real number 2>0,

2) V contains no entire straight lines.

Given a convex cone V in W2, we say that a mapping F of W-ixX W-!
to W;% (=the complexification of W-?) is a V-hermitian form on W~
if it satisfies the following conditions:

1) F is hermitian, i.e., F(u, ") is complex linear with respect to
the variable u, and F(u, w)=F(u, ),

2) F is V-positive definite, i.e., F(u,u) ¢ V for any u, and F(u, )
20 for any u=0, where V denotes the closure of V in W2

Suppose that we are given a convex cone V in W% and a V-her-
mitian form F on W-'. We put W=W;*+W-! and denote by 2
(resp. z7") the projection of W onto W;? (resp. onto W-Y). Further-
more we define a mapping @ of W to W~ by

d(p)=Im 2 ®)—F@"'®),27'(»)) (peW).
Then the domain D=®@-%(V) (=the inverse image of V by @) of W is
called the Siegel domain of second kind associated with the cone V
and the V-hermitian form F (Pyatetski-Shapiro [2]). Let S be the
real submanifold of W defined by =0, i.e., S=@7'(0). Then [2] has
asserted that S is just the Silov boundary of the domain D with re-
spect to an appropriate ring of holomorphic functions on D.

2. Hereafter we assume that D is affine homogeneous, that is,
the group of all affine transformations of W leaving D invariant acts
transitively on D. A holomorphic vector field on D is called an infini-
tesimal automorphism of D if it generates a one parameter group of
automorphisms of D or equivalently if it is complete as a vector field.
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An infinitesimal automorphism of D is called linear (resp. affine) if it
is (extended to) an infinitesimal linear (resp. affine) transformation of
W. (Under the identification that W= TP(W) (=the tangent space to
W at any p e W), an infinitesimal affine transformation of W may be
described as a mapping of the form: W s p—a+ Ap e W, where a ¢ W
and A is an endomorphism of W.)

Theorem 1. FEwvery infinitesimal automorphism of D is extended
to a holomorphic vector field which is defined on the whole W and
which is tangent to the Silov boundary S of D.

Let E denote the infinitesimal linear transformation of W defined
by

E@p)=-2"p)—2"'®) (@eW)
Then we see that E is an infinitesimal linear automorphism of D.

Theorem 2. Let g be the Lie algebra of all infinitesimal auto-
morphisms of D and, for any integer p, let g? be the subspace of g
consisting of all the elements X such that [E, X]1=pX. Then we have:

(1) g=>g* (direct sum) and it is a graded Lie algebra.

(2) gpz?O} P<—-2), and g,=g*+g '+g" is the Lie algebra of
all infinitesimal affine automorphisms of D. More precisely, g is the
Lie algebra of all infinitesimal linear automorphisms of D, and
m=gqg*+qg' is the Lie algebra of all infinitesimal “parallel transle-
tions” of D.

(3) g being identified with a Lie algebra of holomorphic vector

fields on W, the direct sum > gP is characterized as the isotropy algebra
20

of g at the origin 0 of W.
(4) Let p be any integer =0. Then the condition “X e g?,
[X, m]={0}" implies X=0.
Remark. We first remark that the Lie algebra ¢’ consists of all
endomorphisms X of W satisfying the following conditions (cf. [2]):
1) XWecWe (p=-2, —1),
2) XF(u,uw)=FXu,u)+F(u, Xu),
3) X restricted to W-? is an infinitesimal automorphism of the
cone V.
Let w2 e W2 (p=—2, —1) and put w=w"?+w™!. Define an infinitesi-
mal affine transformation s(w) of W by
sW)P)=w+2v/ —1F '), w ) +w™" (peW).
Then we see that s(w) is an infinitesimal affine automorphism of D,
which has been called an infinitesimal parallel translation of D (cf.
[2]). We remark that g? (p= —2, —1) consists of all s(w) (w e W») and
that
[s(w), s(w")]=4s(ImF(w, w")) (w,w e W™,
[X,s(w)]l=s(Xw) (weW324+WXeqg".
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3. Let us now construct a graded Lie algebra §=> §? satisfying

the following conditions (cf. N. Tanaka [3], §5): ’
1) > gr= Z g? as graded Lie algebras,

p=0

2) Letop be any integer =0. Then the condition “X ¢ §», [X, m]
={0}” implies X=0,

3) § is maximum among the graded Lie algebras satisfying con-
ditions 1) and 2). More precisely, let {=3 {» be any graded Lie alge-

bra satisfying conditions 1) and 2). Thgn f is imbedded in § as a
graded subalgebra.

We put §7=§? (p<0). Since the condition “X e ¢°, [X, m]={0}"
implies X=0, we see that ¢" may be identified with a subspace of
q°=>" Hom(g", g)C Hom(m, m). This being said, we have

’<° [X(Y"), 24— [X%(Z°), Y71=X(Y", Z°])
for all Y7 eg",Z¢c g® (r,5<0). Let us define vector spaces §? (p=0)
inductively as follows: First of all we define §° as . Suppose now
that we have defined §? (0<p<k) in such a way that §» is a subspace
of qP—Z Hom(g", ”P)CHom(m,Zg”P) Then we define §* to be

the subspace of qk——}: Hom(g', “") which consists of all X*eq*

satisfying the followmg equahtles

XE(Y™WZ%)—XMZ YY) =X [Y", Z°])
for all Y eg", Z° ¢ g® (r,8<0), where we put X«(Y"NZ)=[X*(Y"), Z°]
(f r+ k<0) and X*(ZNY")=[X*(Z*), Y"] (if s+ k<0). Thus we have
completed our inductive definition. We put §=3§47. Then we see

easily that there is a unique bracket operation [p, ]in § such that §
becomes a graded Lie algebra satisfying conditions 1) and 2) with re-
spect to this bracket operation and such that [X*, Y ]=X*(Y") for all
Xt e gk, Y eg (k=0,r<0). Moreover it is easy to see that the graded
Lie algebra § thus obtained satisfies condition 3). This graded Lie
algebra is called the prolongation of g,=g*+g~'+g".

By Theorem 2, (4), we know that g is a graded subalgebra of § in
a natural manner.

Theorem 3. Let g= Z g? be the graded Lie algebra in Theorem

2 and let § Z gr be the prolongatzon of go=g7*+g'+¢g". For each

X e g, denote by Tr(X) the trace of X as an endomorphism of W.
Then g is ¢ graded subalgebra of § and the subspaces g?C§? (p>0) are
inductively determined as follows:

(1) g'= @1.

(2) ¢ consists of all X € §* such that Im Tr([X,YD=0 for all
Yeg™

(8) g¢° consists of all X € §° such that [X, g ']C g’
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(4) ¢ consists of all X e §* such that [X, g7 1Cg® and Tr([X, Y],
YD=0 forall Y eg.

(5) For each k>4, g* consists of all X e §* such that [X,g7%]
cgt?and [X,g ' lcgh

Theorem 4. Assume that W2 is generated by the elements of
the form F(u,u) (ue W), or equivalently g *=I[g™',q"']. Then we
have g=4§.

Kaneyuki-Sudo [1] has shown that the assumption in Theorem 4
is always satisfied if the Siegel domain D is symmetric and if each ir-
reducible component of D is not of tube type.
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