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104. Convergence of Transport Process to Diffusion

By Toitsu WATANABE
Department of Applied Physics, Nagoya University

(Comm. by Kinjird KUNUGI, M. J. A., June 10, 1969)

Let us consider a transported particle in the transprot medium G,
which is bounded or unbounded domain of R». Suppose that it travels
in a straight line and interacts with the medium with probability k4
+0(4) during time ¢ and £+ 4. The scattering distribution of velocity
from cw to cw’, w’ € dw’ at point x e G is assumed given by x (dw’).
If the particle hits the boundary of G, then it dies. Under these
assumptions, the position X(¢) and velocity V(t) of the particle at time
t together make up a Markov process (X(t), V(¥)).

The purpose of this paper is to show that when ¢— oo, the process
X(t) converges to a diffusion under some additional assumptions
(Assumptions I, II, and III).

The same result has been obtained in case of one-dimensional
transport process by N. Ikeda, H. Nomoto [1] and M. Pinsky [3]; in
case of two-dimensional isotropic one by A.S. Monin [2] and
T. Watanabe [6]; in case of multi-dimensional isotropic one by
S. Watanabe and T. Watanabe [5].

1. Let G be bounded or unbounded domain of n-dimensional
Euclidian space R*. Suppose that the boundary 0G of G is smooth,
if it exists. Let Q be a bounded set in R*. Let denote by S the product
space of R and 2, and by C,(S) the Banach space of bounded continuous
function on S vanishing at infinity and at boundary point (x, w) such
that (n,, ) <0, where n, is an inner normal vector at xcdG. Let
T¢, >0, be the strongly continuous positive contraction semigroup on
C,(S) with infinitesimal generator A° given by :

A, 0)=c(w, grad 1)+ SQ [f (e, ) — (&, @)]dm. o),
0

where (w, grad f)= Zn] w; e fyo=(w, -+, w,), and 7, (xre R") is a
i=1 "

probability measure on 2. We call this semigroup 77, t>0, the trans-
port process with speed c.

Now let C,(@) be the Banach space of bounded continuous function
on G vanishing near the boundary dG and at infinity, and C%(G) be
the subspace of Cy(G) of function with compact support, whose thrice
derivatives belong to C,(G). Let T2, t>0, be the strongly continuous
positive contraction semigroup on Cy(G) of diffusion determined by :
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F(@)+ 33 ba) 0 p().

DF(x)= 13%:9; a'u(x) 7z,

0*
0x,0%,
We shall always assume the following :

(I) ¢/k=d? (constant)

(I1) D(C%(@M)={U=DF: F ¢ C%(G)} is dense in C,(G)

ain s hhoms [F (“"2’2 F@l g7 (w)=1 LDF@)

for every F e C%(G).
Then we have

Theorem. For every F e C(®),

TR (2, @)—TPF(x) uniformly in (z, @), as c—oco.®

To prove the theorem, we prepare a following lemma mentioned
in [4].

Lemma. Let Xand X,,n=1,2, ..., be Banach spaces and P,: X
—X, be linear maps such that |P,|| <1 and lim||P,f||=|f| for every

feX. Let T®t) and T,(t), t>0, be strongly continuous positive con-

traction semigroups on X with infinitesimal generator A and on X,

with A,,n=1,2, ..., respectively. Suppose that there exists a dense

subset M of X such that |P,Af — A,P,f||—0 for any feM as n—oo

aond AM)={g: g=Af, fecM}is dense in X. Then for every f e X,
P, T®)f—T,P,f|—0 as n—oo.

Proof of Theorem. For F ¢ C(G), define (P°F)(z, w)=F (x-l— = )
(=0, if <x+—%w> 2 G). Then it follows from Assumptions I, II, and

III that, for F e C%(G),
AP F)(z, »)=c(w, grad PF)+k ja [(PF)(x, v)— (PF)(&, ®)1dr,(v)

d —
= [c(w, grad F) (x + _d__w> VE [F (x + Ww) F(w)”

vk (L/VE)
F(2)
+J[ ( (l/k)) x] A=)

—DF(z) uniformly in (z, w) as ¢c—co.
On the other hand, by Assumption II,
|(P*DF)(z, ®)— DF(x)| = ‘(DF) <x+ %a)) _DF@) ‘ -0

uniformly in (z, ) as ¢c—co.
Hence, for F'e C4(G),

|A°P°F —P°DF|—0 as c¢—oo.
* We also consider F' as a function of (x,») by putting F(x, 0)=F(x).
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Now let take C(G), C(S), P¢, TP, T; and C%(G) for X, X,, P,, T(t),

T.(t) and M in our lemma. Then we get by the lemma

|T¢P°F —PTPF || —0 as c—co for any F ¢ C(G).
Therefore ||T¢F—°TPF|—0 as c—oo for Fe C(G), since |T¢P°F
—T¢F|—0 and ||P°TPF—TPF||—0 as ¢—oco. Thus we complete the
proof.

2. Example. 2.1 (cf. [6]). Let G=R* and Q2="S"! be the
(n—1)-dimensional unit sphere in R* and «, be the uniform probability
measure on S»! (it is independent of x ¢ R”). The transport process
for this case is called the isotropic scattering transport process with
speed ¢. Put D=%A and d2=%. Then Assumptions I, II, and III are

satisfied. Thus the isotropic scattering transport process converges
to the Brownian motion.

22. G=R, 0={-1,1, =n({p== ( ¢k> 7. — 1))
ST e
2.3. G=R, 0,= { _a(lx_) (1)}(a(x)>0) m (|- a(lx)})
—m () =1 p=ge@-L, d=
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