97. A Remark on the Π -imbedding of Homotopy Spheres

By Fumiko BANDō and Kiyoshi KATASE

(Comm. by Kenjiro SHODA, M. J. A., June 10, 1969)

Let Θ_n be the group of homotopy *n*-spheres and \tilde{S}^n be an element of Θ_n . \tilde{S}^n represents an element of a subgroup $\Theta_n(\partial \pi)$ of Θ_n if and only if \tilde{S}^n is the boundary of a parallelizable manifold.

It is known that every \tilde{S}^{13} is imbeddable in the 17-dimensional unit sphere S^{17} with a trivial normal bundle (Katase [3]). (Such an imbedding is called a π -imbedding.) But in the case of codimension 3, it has been unknown whether the π -imbedding exists or not. The result of this paper is that there exists a 13-dimensional homotopy sphere \tilde{S}^{13} which is not π -imbeddable in S^{16} .

1. Suppose that \tilde{S}^n is π -imbedded in S^{n+k} $(3 \leq k < n)$. Then the tubular neighbourhood of \tilde{S}^n in S^{n+k} and its boundary is easily seen to be diffeomorphic to $S^n \times D^k$ and $S^n \times S^{k-1}$ respectively (here D^k is the closed unit disk in euclidean k-space and is bounded by S^{k-1}). Moreover, \tilde{S}^n is isotopic to an \tilde{S}^n_1 which lies in $S^n \times S^{k-1} \subset S^{n+k}$ with normal (k-1)-frame \mathcal{F} in $S^n \times S^{k-1}$ and is homotopic, in $S^n \times S^{k-1}$, to $S^n \times x_0$ for some $x_0 \in S^{k-1}$ (Levine [6]). The Pontrjagin-Thom construction with respect to a normal (k-1)-frame \mathcal{F} on \tilde{S}^n_1 in $S^n \times S^{k-1}$ yields a map

$$\varphi; S^n \times S^{k-1} \longrightarrow S^{k-1}$$

which maps \tilde{S}_1^n to a point p in S^{k-1} (see, for example, Kervaire [4]).

Suppose that φ can be extended to a map

$$\Phi'; S^{n+k} - \operatorname{Int} S^n \times D^k \longrightarrow S^{k-1}.$$

Then we can approximate it by a smooth map Φ keeping φ fixed.

Since we may consider p as a regular value of Φ , $\Phi^{-1}(p)$ or at least the component of \tilde{S}_1^n in $\Phi^{-1}(p)$ is an (n+1)-dimensional submanifold of S^{n+k} with a trivial normal bundle and its boundary is \tilde{S}_1^n . Therefore \tilde{S}^n bounds a parallelizable manifold, i.e., \tilde{S}^n is an element of $\Theta_n(\partial \pi)$.

2. Now we consider the obstructions to extending φ over $S^{n+k} - \operatorname{Int}(S^n \times D^k)$ which lie in the cohomology groups

$$H^{r}(S^{n+k} - \operatorname{Int}(S^{n} \times D^{k}), S^{n} \times S^{k-1}; \pi_{r-1}(S^{k-1})).$$

Lemma. The obstructions to such an extension are zero for $r \neq n+k$.

Proof. Consider the cohomology exact sequence of the pair $(S^{n+k}-\operatorname{Int}(S^n\times D^k), S^n\times S^{k-1})$. Since the inclusion map

$$\iota$$
; $y_0 \times S^{k-1} \longrightarrow S^{n+k} - \operatorname{Int}(S^n \times D^k)$, for some $y_0 \in S^n$,

is a homotopy equivalence, we see that $H^r(S^{n+k} - \operatorname{Int}(S^n \times D^k), S^n \times S^{k-1})$ are zero except for r=n+1 and n+k. As for the case of r=n+1, consider the following commutative diagram:

$$\pi_{n+1}(S^{n+k} - \operatorname{Int}(S^n \times D^k), S^n \times S^{k-1}) \to \pi_n(S^n \times S^{k-1}) \xrightarrow{i_*} \pi_n(S^{n+k} - \operatorname{Int}(S^n \times D^k))$$

$$\stackrel{H \downarrow \cong}{\longrightarrow} H_{n+1}(S^{n+k} - \operatorname{Int}(S^n \times D^k), S^n \times S^{k-1}) \xrightarrow{\cong} H_n(S^n \times S^{k-1})$$

where H is the Hurewicz homomorphism.

Since $i_* = \iota_* \circ (p_2)_*$, where $p_2: S^n \times S^{k-1} \to y_0 \times S^{k-1}$ is the projection on the second factor, the boundary of the generating cycle of $H_{n+1}(S^{n+k} - \operatorname{Int}(S^n \times D^k), S^n \times S^{k-1})$ is homologous and homotopic to \tilde{S}_1^n in $S^{n+k} - \operatorname{Int}(S^n \times D^k)$ and φ maps \tilde{S}_1^n to a point p in S^{k-1} . Hence φ can be extended over $(S^{n+k} - \operatorname{Int}(S^n \times D^k))^{(n+1)} \cup S^n \times S^{k-1}$ and the obstruction appears only in the dimension n+k.

Applying this lemma, we obtain

Theorem. There exists a 13-dimensional homotopy sphere \tilde{S}^{13} which is not π -imbeddable in S^{16} .

Proof. Suppose that the generator \tilde{S}^{13} of $\Theta_{13} \cong Z_3$ is π -imbeddable in S^{16} . Since \tilde{S}^{13} does not bound a parallelizable manifold, the obstruction σ to extending φ over $S^{16} - \operatorname{Int}(S^{13} \times D^3)$ is a non-zero element of $H^{16}(S^{16} - \operatorname{Int}(S^{13} \times D^3), S^{13} \times S^2; \pi_{15}(S^2)) \cong \pi_{15}(S^2) \cong Z_2 + Z_2$ (Toda [7]). The obstruction over the connected sum of pairs $(S^{16}, S^{13} \times D^3) \notin (S^{16}, S^{13} \times D^3)$ (see, for example, Haefliger [1] where the disk pair (D^{16}, D^{13}) must be imbedded so that we may obtain $\tilde{S}_1^{13} \# \tilde{S}_1^{13}$) is twice of σ and $2\sigma = 0$. This contradicts the fact that $\tilde{S}^{13} \# \tilde{S}^{13}$ is not an element of $\Theta_{13}(\partial \pi) = 0$. Therefore \tilde{S}^{13} is not π -imbeddable in S^{16} .

Addendum to the preceeding paper [3].

Let \tilde{S}^n ($\in \Theta_n$) correspond (modulo *J*-image) to an element α of $\pi_{N+n}(S^N)$ for sufficiently large N and let \tilde{S}^n be π -imbedded in S^{n+k} , then α is an (N-k)-fold suspension element (modulo *J*-image). Applying this fact, we see that there exist homotopy 10-, 14-, 17- and 18-spheres which are not π -imbeddable in S^{15} , S^{21} , S^{28} and S^{29} respectively.

On the other hand, following the method of Hsiang, Levine and

No. 6]

Szczarba [2], we obtain that every homotopy 17- and 18-sphere is π -imbeddable in S^{29} and S^{30} respectively.

(Note that Theorem (1.2) in [2] can also be proved for n=18.) Thus we rewrite the table in [3].

Table

Table									
n	8	9	10	13	14	15	16	17	18
order of Θ_n	2	8	6	3	2	16256	2	16	16
$\begin{array}{c} \text{order of} \\ \Theta_n(\partial \pi) \end{array}$	1	2	1	1	1	8128	1	2	1
k	4	4	6	4	7~8	3~4	14	12	12

(k is the smallest codimension with which every homotopy *n*-sphere is π -imbeddable.)

References

- [1] A. Haefliger: Knotted (4k-1)-spheres in 6k-space. Ann. Math., 75, 452-466 (1962).
- [2] W. C. Hsiang, J. Levine, and R. H. Szczarba: On the normal bundle of a homotopy sphere embedded in Euclidean space. Topology, 3, 173-181 (1965).
- [3] K. Katase: II-imbeddings of homotopy spheres. Proc. Japan Acad., 44, 573-575 (1968).
- [4] M. Kervaire: An interpretation of G. Whitehead's generalization of the Hopf invariant. Ann. Math., **69**, 345-364 (1959).
- [5] M. Kervaire and J. Milnor: Groups of homotopy spheres. I. Ann. Math., 77, 504-537 (1963).
- [6] J. Levine: A classification of differentiable knots. Ann. Math., 82, 15-50 (1965).
- [7] H. Toda: Composition methods in homotopy groups of spheres. Ann. Math. Studies, No. 49 (1962).