97. A Remark on the ח-imbedding of Homotopy Spheres

By Fumiko Bandō and Kiyoshi Katase

(Comm. by Kenjiro Shoda, M. J. A., June 10, 1969)

Let Θ_{n} be the group of homotopy n-spheres and \tilde{S}^{n} be an element of Θ_{n}. \tilde{S}^{n} represents an element of a subgroup $\Theta_{n}(\partial \pi)$ of Θ_{n} if and only if \tilde{S}^{n} is the boundary of a parallelizable manifold.

It is known that every \tilde{S}^{13} is imbeddable in the 17-dimensional unit sphere S^{17} with a trivial normal bundle (Katase [3]). (Such an imbedding is called a π-imbedding.) But in the case of codimension 3 , it has been unknown whether the π-imbedding exists or not. The result of this paper is that there exists a 13-dimensional homotopy sphere \tilde{S}^{13} which is not π-imbeddable in S^{16}.

1. Suppose that \tilde{S}^{n} is π-imbedded in $S^{n+k}(3 \leqq k<n)$. Then the tubular neighbourhood of \tilde{S}^{n} in S^{n+k} and its boundary is easily seen to be diffeomorphic to $S^{n} \times D^{k}$ and $S^{n} \times S^{k-1}$ respectively (here D^{k} is the closed unit disk in euclidean k-space and is bounded by S^{k-1}). Moreover, \tilde{S}^{n} is isotopic to an \tilde{S}_{1}^{n} which lies in $S^{n} \times S^{k-1} \subset S^{n+k}$ with normal ($k-1$)-frame \mathscr{F} in $S^{n} \times S^{k-1}$ and is homotopic, in $S^{n} \times S^{k-1}$, to $S^{n} \times x_{0}$ for some $x_{0} \in S^{k-1}$ (Levine [6]). The Pontrjagin-Thom construction with respect to a normal ($k-1$)-frame \mathcal{F} on \tilde{S}_{1}^{n} in $S^{n} \times S^{k-1}$ yields a map

$$
\varphi ; S^{n} \times S^{k-1} \longrightarrow S^{k-1}
$$

which maps \tilde{S}_{1}^{n} to a point p in S^{k-1} (see, for example, Kervaire [4]).
Suppose that φ can be extended to a map

$$
\Phi^{\prime} ; S^{n+k}-\operatorname{Int} S^{n} \times D^{k} \longrightarrow S^{k-1}
$$

Then we can approximate it by a smooth $\operatorname{map} \Phi$ keeping φ fixed.
Since we may consider p as a regular value of $\Phi, \Phi^{-1}(p)$ or at least the component of \tilde{S}_{1}^{n} in $\Phi^{-1}(p)$ is an $(n+1)$-dimensional submanifold of S^{n+k} with a trivial normal bundle and its boundary is \tilde{S}_{1}^{n}. Therefore \tilde{S}^{n} bounds a parallelizable manifold, i.e., \tilde{S}^{n} is an element of $\Theta_{n}(\partial \pi)$.
2. Now we consider the obstructions to extending φ over $S^{n+k}-\operatorname{Int}\left(S^{n} \times D^{k}\right)$ which lie in the cohomology groups

$$
H^{r}\left(S^{n+k}-\operatorname{Int}\left(S^{n} \times D^{k}\right), S^{n} \times S^{k-1} ; \pi_{r-1}\left(S^{k-1}\right)\right)
$$

Lemma. The obstructions to such an extension are zero for $r \neq n+k$.

Proof. Consider the cohomology exact sequence of the pair ($\left.S^{n+k}-\operatorname{Int}\left(S^{n} \times D^{k}\right), S^{n} \times S^{k-1}\right)$. Since the inclusion map

$$
\iota ; y_{0} \times S^{k-1} \longrightarrow S^{n+k}-\operatorname{Int}\left(S^{n} \times D^{k}\right), \quad \text { for some } y_{0} \in S^{n}
$$

is a homotopy equivalence, we see that $H^{r}\left(S^{n+k}-\operatorname{Int}\left(S^{n} \times D^{k}\right), S^{n} \times S^{k-1}\right)$ are zero except for $r=n+1$ and $n+k$. As for the case of $r=n+1$, consider the following commutative diagram :
$\pi_{n+1}\left(S^{n+k}-\operatorname{Int}\left(S^{n} \times D^{k}\right), S^{n} \times S^{k-1}\right) \rightarrow \pi_{n}\left(S^{n} \times S^{k-1}\right) \overrightarrow{i_{*}} \pi_{n}\left(S^{n+k}-\operatorname{Int}\left(S^{n} \times D^{k}\right)\right)$ ${ }_{H} \downarrow \cong{ }^{H} \downarrow$
$H_{n+1}\left(S^{n+k}-\operatorname{Int}\left(S^{n} \times D^{k}\right), S^{n} \times S^{k-1}\right) \xlongequal{\cong} H_{n}\left(S^{n} \times S^{k-1}\right)$
where H is the Hurewicz homomorphism.
Since $i_{*}=\iota_{*} \circ\left(p_{2}\right)_{*}$, where $p_{2}: S^{n} \times S^{k-1} \rightarrow y_{0} \times S^{k-1}$ is the projection on the second factor, the boundary of the generating cycle of $H_{n+1}\left(S^{n+k}-\operatorname{Int}\left(S^{n} \times D^{k}\right), S^{n} \times S^{k-1}\right)$ is homologous and homotopic to \tilde{S}_{1}^{n} in $S^{n+k}-\operatorname{Int}\left(S^{n} \times D^{k}\right)$ and $\varphi \operatorname{maps} \tilde{S}_{1}^{n}$ to a point p in S^{k-1}. Hence φ can be extended over $\left(S^{n+k}-\operatorname{Int}\left(S^{n} \times D^{k}\right)\right)^{(n+1)} \cup S^{n} \times S^{k-1}$ and the obstruction appears only in the dimension $n+k$.

Applying this lemma, we obtain
Theorem. There exists a 13-dimensional homotopy sphere \tilde{S}^{13} which is not π-imbeddable in S^{16}.

Proof. Suppose that the generator \tilde{S}^{13} of $\Theta_{13} \cong Z_{3}$ is π-imbeddable in S^{16}. Since \tilde{S}^{13} does not bound a parallelizable manifold, the obstruction σ to extending φ over $S^{16}-\operatorname{Int}\left(S^{13} \times D^{3}\right)$ is a non-zero element of $H^{16}\left(S^{16}-\operatorname{Int}\left(S^{13} \times D^{3}\right), S^{13} \times S^{2} ; \pi_{15}\left(S^{2}\right)\right) \cong \pi_{15}\left(S^{2}\right) \cong Z_{2}+Z_{2}$ (Toda [7]). The obstruction over the connected sum of pairs ($S^{16}, S^{13} \times D^{3}$) \# ($S^{16}, S^{13} \times D^{3}$) (see, for example, Haefliger [1] where the disk pair (D^{16}, D^{13}) must be imbedded so that we may obtain $\left.\tilde{S}_{1}^{13} \# \tilde{S}_{1}^{13}\right)$ is twice of σ and $2 \sigma=0$. This contradicts the fact that $\widetilde{S}^{13} \# \widetilde{S}^{13}$ is not an element of $\Theta_{13}(\partial \pi)=0$. Therefore \tilde{S}^{13} is not π-imbeddable in S^{16}.

Addendum to the preceeding paper [3].
Let $\tilde{S}^{n}\left(\epsilon \Theta_{n}\right)$ correspond (modulo J-image) to an element α of $\pi_{N+n}\left(S^{N}\right)$ for sufficiently large N and let \tilde{S}^{n} be π-imbedded in S^{n+k}, then α is an ($N-k$)-fold suspension element (modulo J-image). Applying this fact, we see that there exist homotopy $10-, 14-, 17$ - and 18 -spheres which are not π-imbeddable in S^{15}, S^{21}, S^{28} and S^{29} respectively.

On the other hand, following the method of Hsiang, Levine and

Szczarba [2], we obtain that every homotopy 17- and 18-sphere is π imbeddable in S^{29} and S^{30} respectively.
(Note that Theorem (1.2) in [2] can also be proved for $n=18$.)
Thus we rewrite the table in [3].
Table

n	8	9	10	13	14	15	16	17	18
order of Θ_{n}	2	8	6	3	2	16256	2	16	16
order of $\Theta_{n}(\partial \pi)$	1	2	1	1	1	8128	1	2	1
k	4	4	6	4	$7 \sim 8$	$3 \sim 4$	14	12	12

(k is the smallest codimension with which every homotopy n-sphere is π-imbeddable.)

References

[1] A. Haefliger: Knotted (4k-1)-spheres in $6 k$-space. Ann. Math., 75, 452-466 (1962).
[2] W. C. Hsiang, J. Levine, and R. H. Szczarba: On the normal bundle of a homotopy sphere embedded in Euclidean space. Topology, 3, 173-181 (1965).
[3] K. Katase: Π-imbeddings of homotopy spheres. Proc. Japan Acad., 44, 573-575 (1968).
[4] M. Kervaire: An interpretation of G. Whitehead's generalization of the Hopf invariant. Ann. Math., 69, 345-364 (1959).
[5] M. Kervaire and J. Milnor: Groups of homotopy spheres. I. Ann. Math., 77, 504-537 (1963).
[6] J. Levine: A classification of differentiable knots. Ann. Math., 82, 15-50 (1965).
[7] H. Toda: Composition methods in homotopy groups of spheres. Ann. Math. Studies, No. 49 (1962).

