96. An Improved Proof for a Theorem of N. Chomsky

By Masako Takahashi

Department of the Foundations of Mathematical Sciences, Tokyo University of Education

(Comm. by Zyoiti SUETUNA, M. J. A., June 10, 1969)

A context-free grammar is said to be self-embedding if and only if it is reduced and contains a derivation of the form $\xi \stackrel{*}{\Rightarrow} u \xi v$, where ξ is a variable and u, v are some non- ε words. It is known that

Theorem. A language L is regular if and only if there is a non-self-embedding grammar generating L.

This theorem was first presented in Chomsky [1] with a lengthy proof. Later a simplified proof was given in Chomsky [2]. In this note, the proof is improved by introducing some equivalence classes of the variables.

Our notations generally follow Ginsburg [3] with the additional convention that the variables are denoted by Greek small letters and words by Latin small letters.

1. Preliminaries. If a language L is regular, there exists a one-sided-linear grammar G such that L(G) = L, which is of course not self-embedding. So it is enough if we prove the regularity of L(G) for any given reduced non-self-embedding (n.s.e) grammar $G = (V, \Sigma, P, \sigma)$.

Write $\xi \supseteq \eta$ whenever there exists at least one derivation of the form $\xi \stackrel{*}{\Rightarrow} u\eta v$, where $u, v \in V^*$. The relation \supseteq is reflexive and transitive.

Write $\xi \equiv \eta$ if and only if $\xi \supseteq \eta$ and $\eta \supseteq \xi$. The relation \equiv is an equivalence relation between variables.

Let $V(\xi)$ be the equivalence class under \equiv containing $\xi:V(\xi)=\{\eta\,|\,\eta\in V-\Sigma,\,\eta\equiv\xi\}$, introducing a partial ordering between the equivalence classes as follows: $V(\xi)\geqslant V(\zeta)$ if and only if $\xi\supseteq\zeta$. Let $U(\xi)$ be the union of all $V(\zeta)$ such that $V(\xi)\geqq V(\zeta)$ and $\Sigma:U(\xi)=\{\zeta\,|\,\zeta\in V-\Sigma,\,\xi\supseteq\zeta,\,\xi\not\equiv\zeta\}\cup\Sigma$.

2. Lemma. Continuing with a reduced n.s.e grammar suppose that $\xi_1 \equiv \xi_2 \equiv \xi_3 \equiv \xi_4$ and $\xi_1 \stackrel{*}{\Rightarrow} s \xi_2 t$, $\xi_3 \stackrel{*}{\Rightarrow} u \xi_4 v$. Then either $t = v = \varepsilon$ or $s = u = \varepsilon$.

Proof. By the definition of \equiv , there exist the derivations of the form $\xi_2 \stackrel{*}{\Rightarrow} s' \xi_3 t'$ and $\xi_4 \stackrel{*}{\Rightarrow} u' \xi_1 v'$. Then

$$\xi_1 \stackrel{*}{\Rightarrow} ss'uu'\xi_1v'vt't.$$

In this derivation, assume that either t or v is a non- ε word. Then ss'uu' must be ε , since the grammar is n.s.e. So $s=u=\varepsilon$, completing the proof.

3. Proof of the theorem, concluded. Let $P(\xi)$ be the set of all production rules in P whose left-hand sides belong to $V(\xi)$. By the lemma, the grammar $G(\xi) = (V(\xi) \cup U(\xi), U(\xi), P(\xi), \xi)$ is one-sided-linear. Hence, we may write a regular expression on $U(\xi)$ representing $L(G(\xi))$. If in particular $V(\xi)$ is minimal with respect to the ordering \geq , then $U(\xi) = \Sigma$, so that the regular expression is on Σ . Substituting one by one the expressions written for the variables of lower classes into those written for the variables of higher classes, for each variable we get a regular expression on Σ . The expression thus obtained for σ coincides with L(G). This proves that L(G) is regular.

References

- N. Chomsky: On certain formal properties of grammars. Information and Control, 2, 137-167 (1959).
- [2] —: A note on phrase structure grammars. Information and Control, 2, 393-395 (1959).
- [3] S. Ginsburg: The Mathematical Theory of Context-free Languages. Mc-Graw-Hill Book Company (1966).