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In [2], we have introduced the notion of the Dirichlet space
relative to an L2-space (we will call this an L2-Dirichlet space). The
purpose of this paper is to derive a normed ring (called a Dirichlet
ring) from any given L2-Dirichlet space in the similar manner as
Royden ring [5] from the space of functions with finite Dirichlet inte-
grals. Dirichlet rings will enable us to define a natural equivalence
relation among the collection of all L-Dirichlet spaces. We will dis-
cuss elsewhere the problem to find out nice versions from each equiva-
lence class ([3]).

1. L.Dirichlet spaces and L.resolvents.
We call (X, m, F, C) a complex L-Dirichlet space (in short, a D-

space) if the following conditions are satisfied.
(1.1) X is a locally compact Hausdorff space.
(1.2) m is a Radon measure on X.
(1.3) F is a linear subspace of complex L2(X)=L2(X; m),
two functions being identified if they coincide m-a.e, on X. ’ is a
non-negative definite bilinear form on F and, for each a>0, is a
complex Hilbert space with inner product

"(u, v)-(u, v)+ a(u, v),
where (u, V)x is the inner product in L2(X)-sense.
(1.4) Each normal contraction operates on (F, ’)"
if u e and a measurable function v satisfies

v(x) <= u(x) v(x)--v(y)l <= u(x)--u(y)l m-a.e,
then v e F and ’(v, v)_<_ ’(u, u).

Let (X, m) be as above. We call a family of linear bounded sym-
metric operators {G., c>0} on L2(X) an L2-resolvent iff it satisfies the
resolvent equation and it is sub-Markov" for each c>0, G translates
each real function into a real function and O<_cG.u<=l m-a.e for
u L2(X) such that 0=< u<= 1 m-a.e.

There is a one-to-one correspondence between the class o D-spaces
and the class of L-resolvents ([2]).

In fact, with any D-space (X, m, F, ), we can associate an L2-

resolvent by the equation
(1.5) "(G.u, v)-(u, v)x for any v e ,
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where u is any element of L(X).
Conversely, for any L(X; m)-resolvent {G., )0}, a D-space can

be defined by
(1.6) (u, u)= lim(u-Gu, u)x, u e L(X),

(1.7) -{u e L(X) g’(u, u)< + }.
We note that each normal contraction operates on this space because
of the following lemma.

Lemma 1. For u e L(X), O, > O,

(u-- G+.u, U)x- 2 Jxxa+"(dx’ dy) u(x)-u(y)]

G,v)x- 9x[xa(dx’ dy)u(x)v(y), u, v e L(X),(u,

and k is a Radon-Nikodym derivative of the measure a(. X) with
respect to m(.).

The correspondence defined by (1.5) and that defined by (1.6) and
(1.7) are reciprocal to each other. This act combined with Lemma 1
enables us to strengthen the condition (1.4) for the D-space as ollows.

Lemma 2. Let (X, m, , ) be a D-space. If u, u, ...,u e

and if a measurable function w on X satisfies w(x) u(x)
i=l

w(x) w(y) u(x) u(y) m-a.e, then w e and J"(w, w)
i=l

(u, u), O, o standing for .
i=l

2. Dirichlet rings and equivalence of Dirichlet spaces.
Consider a D-space (X,m,,). We set, or ueL(X)

(-L(X m)), u[ -- ess-sup [u(x) ]. Let us put
xX

(2.1) ()-L(X),
(2.2) lllulll-"(u, u)+ Ilull, u e <>, >0.

Theorem 1. (i) For each a>O, ((), [[[ [[[) is a normed ring,
two functions of () being identified if they coincide m-a.e. Exactly
speaking, it is a complex Banach space and, for any u, ve
u. v e () and [[[u. v[.g [[u][.. [[v[[[..
(ii) For any u e () and a
(2.3) lim lllulll

Proof. Applying Lemma 2 to functions w-u.v, u--B.u and

u=A.v with A-I[ui[, B-i[v[, we see that we and J"(w,w)
gBJ"(u, u)+Ad(v, v). This implies the latter assertion of (i). The
left hand side of (2.3) is not greater than A-[[u([, since u is a normal



No. 6] Dirichlet Spaces and Dirichlet Rings 435

contraction of nA-u. The converse inequality is trivial.
We call (, III II1, 0) the Dirichle ring (in short, D-ring)

induced by (X, m, , C). This ring has not necessarily a unit element
for multiplication.

Lemma :. Let be a Dirichle$ subspace of and L be a closed
subring of (L(X), I1). We assume tha$ u e L implies e L. Then,
the intersection of and L is a closed subring of ((),
L is semi-simple and symmetric with respect to the operation of
taking complex conjugate function. L is a function lattice; for any
real u, v e , u/v and uAv are also in . Further, for any real
ue , uA1 e_.

Proof. In view of the equality (2.3), is semi-simple. is
symmetric, or equivalently ([4]), u e implies v--lull/l+ lule
because v is a normal contraction of [ul e _. For real u e , u[ and
uA1 are normal contractions of u, yielding the final statement.

We will call two D-spaces (X, m, , ’) and (., h, , ) equivalent
iff heir associated D-rings ((), III II1., >0) and ((), II1111,
are isomorphic and isometric, exactly speaking, iff there is a ring

isomorph from () onto () and I]Iu]]]-]]lu]]] for any u e
and 0.

Theorem 2. Suppose that D-spaces (X, m, , ) and (X, ,
are equivalent under a mapping from () onto (). Then, turns
out to be a lattice isomorph and can be extended uniquely to the
next kinds of transformations.
(a) A unitary mapping q from (, ) onto (Y, ),
(b) A unitary mapping from L(X) onto L(X),
(c) A ring isomorphic and isometric mapping ffom L(X) onto
L(X). Here, L(X)(L:(X)) is the closure of (()) in the metric
space L(X)(L(X)). L(X) and L(X) are defined in the same way.
Further, the associated L-resolvents {G.,cO} and {G., aO} are
related by
(2.4) U-G.u, e L(), 0.

Proof. Owing to the equality (2.3), preserves the uniform
norm. On the other hand, () is dense in with metric " ([2];
Lemma 2.1 and Theorem 2.1 (iii)). All the assertions but (2.4) ollow
from these facts and the definition o equivalence. Take e L(X).
By (1.5), we have for any e ,

="(G.;t, ),
which implies (2.4).
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