124. On the Critical Points of Harmonic Functions

By Tokunosuke Yosida
Kyoto Technical University
(Comm. by Kinjirô Kunugi, M. J. A., Sept. 12, 1969)

1. We admit as 2-cells the homeomorph of any convex polygon, ${ }^{1)}$ regarding the vertices and edges of this image as 0 and 1-cells respectively. An i-complex is a connected set of a finite number of i-cells ($i=1,2$) and the characteristic ρ of a complex is defined as $\rho=-a_{0}+a_{1}-a_{2}$ where a_{i} is the number of i-cells ($i=0,1,2$) in the complex. The object of this paper is to give another proof to a theorem of Nevanlinna ${ }^{2)}$ on harmonic functions and to show that the characteristic of a domain plays an important rolle.

Let D be a domain or the union of a finite number of domains and \bar{D} be its closure. We divide \bar{D} in a finite number of 2-cells and consider \bar{D} as a union of 2-complexes. We denote by a_{i} and α_{i}^{\prime} the number of i-cells $(i=0,1,2)$ contained in \bar{D} and D respectively. Then $\rho(\bar{D})=-a_{0}+a_{1}-a_{2}$ and $\rho(D)=-a_{0}^{\prime}+a_{1}^{\prime}-a_{2}^{\prime}$ are the sums of the characteristics of all connected components of \bar{D} and D respectively. A 1complex representing a simple closed curve has the same number of 0 -cells as 1 -cells and so contributes nothing to the characteristic. Hence we have $\rho(D)=\rho(\bar{D})$, when the boundary of D consists of a finite number of simple closed curves.

Let $u(z)$ be a harmonic function in a domain D and $C(u)$ be the niveau curve: $u(z)=$ const. $=u$. The critical points of $u(z)$ in the ordinary sense are the points $z=x+i y$ at which $\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}=0$. Let $v(z)$ be the conjugate harmonic function of $u(z)$ and $w(z)=u(z)+i v(z)$. Then, by virtue of Cauchy-Riemann differential equation, such a point is a zero of $w^{\prime}(z)$. The order of the zero is said to be the multiplicity of a critical point. Let $k-1$ be the multiplicity of a critical point z_{0} of $u(z)$, then the niveau curve $C(u)$ through z_{0} consists of k curves neighbouring z_{0}, each making an angle of $\frac{\pi}{k}$ at z_{0} with its successor.
2. Let D be a domain bounded by m simple closed curves C_{1}, C_{2}, \ldots, C_{m} and α be a set of a finite number of arcs on the boundary of D. We denote by n the number of arcs contained in α, which do not coinside with any of the whole curve C_{i}. Let $u(z)=\omega(z, \alpha, D)$ be the harmonic measure of α at the point z in D. We have $0<u(z)<1$ in D
and the boundary values of $u(z)$ are 1 on α and 0 outside α.
Theorem. The sum of the multiplicities of the critical points of the harmonic measure $u(z)$ in the domain D is equal to $m+n-2$.

Proof. Let $D(u)$ be the set of points z such that $u<u(z)<1$ and $\bar{D}(u)$ be its closure. The set $D(u)$ consists of n simply connected domains and some doubly connected domains for u which is sufficiently near to 1 . These simply connected domains are bounded by the niveau curve $C(u)$ and an arc contained in α. The doubly connected domains are bounded by a simple closed component of $C(u)$ and a component of α which coinsides with some C_{i}. The characteristic of a simply connected domain is -1 and that of doubly connected domain is zero. Hence we have $\rho\left(D\left(u_{0}\right)\right)=-n$ for u_{0} which is sufficiently near to 1 .

When there is no critical point on the niveau curve $C(u)$, the boundary of $D(u)$ consists of a finite number of simple closed curve and so we have $\rho(D(u))=\rho(\bar{D}(u))$.

When there is a critical point of multiplicity $k-1$ on the niveau curve $C(u)$. The critical point appears in the 1-complex representing $C(u) k$ times as 0 -cell. Hence we have $\rho(\bar{D}(u))=\rho(D(u))+k-1$.

When there is no critical point in the open set $D\left(u_{2}\right)-\bar{D}\left(u_{1}\right)\left(u_{2}<u_{1}\right)$, any component of the niveau curve $C(u)\left(u_{2}<u<u_{1}\right)$ is a simple closed curve or a simple arc which combines two end points of α. Hence the set $D\left(u_{2}\right)-\bar{D}\left(u_{1}\right)$ consists of a finite number of simply or doubly connected domains and the number of simply connected components contained in $D\left(u_{2}\right)-\bar{D}\left(u_{1}\right)$ increased by the number of 1-cells contained in the union of 1-complexes representing α is equal to the number of 0 -cells contained in the union of 1-complexes representing α. Hence the complex representing α contributes the same number to the characteristic as the complex representing $D\left(u_{2}\right)-\bar{D}\left(u_{1}\right)$. Since $D\left(u_{2}\right)+\alpha$ $=\bar{D}\left(u_{1}\right)+\left(D\left(u_{2}\right)-\bar{D}\left(u_{1}\right)\right)$, we have $\rho\left(\bar{D}\left(u_{1}\right)\right)=\rho\left(D\left(u_{2}\right)\right)$.

Therefore the only changes in $\rho(D(u))$ are caused by changing from $\rho(D(u))$ to $\rho(\bar{D}(u))$ when u is a level of a critical point. The set $D(0)$ is the whole domain D whose characteristic is $m-2$. Hence the sum of the multiplicities of the critical points of $u(z)$ in D is equal to $\rho(D(0))-\rho\left(D\left(u_{0}\right)\right)=m+n-2$.

References

[1] M. Morse: Topological Methods in the Theory of Functions of a Complex Variable. Princeton (1947).
[2] R. Nevanlinna: Eindeutige analytische Funktionen. Berlin (1936).

