124. On the Critical Points of Harmonic Functions

By Tokunosuke YOSIDA Kyoto Technical University (Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1969)

1. We admit as 2-cells the homeomorph of any convex polygon,¹⁾ regarding the vertices and edges of this image as 0 and 1-cells respectively. An *i*-complex is a connected set of a finite number of *i*-cells (*i*=1, 2) and the characteristic ρ of a complex is defined as $\rho = -a_0 + a_1 - a_2$ where a_i is the number of *i*-cells (*i*=0, 1, 2) in the complex. The object of this paper is to give another proof to a theorem of Nevanlinna²⁾ on harmonic functions and to show that the characteristic of a domain plays an important rolle.

Let D be a domain or the union of a finite number of domains and \overline{D} be its closure. We divide \overline{D} in a finite number of 2-cells and consider \overline{D} as a union of 2-complexes. We denote by a_i and a'_i the number of *i*-cells (i=0, 1, 2) contained in \overline{D} and D respectively. Then $\rho(\overline{D}) = -a_0 + a_1 - a_2$ and $\rho(D) = -a'_0 + a'_1 - a'_2$ are the sums of the characteristics of all connected components of \overline{D} and D respectively. A 1-complex representing a simple closed curve has the same number of 0-cells as 1-cells and so contributes nothing to the characteristic. Hence we have $\rho(D) = \rho(\overline{D})$, when the boundary of D consists of a finite number of simple closed curves.

Let u(z) be a harmonic function in a domain D and C(u) be the niveau curve: u(z) = const. = u. The critical points of u(z) in the ordinary sense are the points z = x + iy at which $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0$. Let v(z)be the conjugate harmonic function of u(z) and w(z) = u(z) + iv(z). Then, by virtue of Cauchy-Riemann differential equation, such a point is a zero of w'(z). The order of the zero is said to be the multiplicity of a critical point. Let k-1 be the multiplicity of a critical point z_0 of u(z), then the niveau curve C(u) through z_0 consists of k curves neighbouring z_0 , each making an angle of $\frac{\pi}{k}$ at z_0 with its successor.

2. Let D be a domain bounded by m simple closed curves C_1, C_2, \dots, C_m and α be a set of a finite number of arcs on the boundary of D. We denote by n the number of arcs contained in α , which do not coinside with any of the whole curve C_i . Let $u(z) = \omega(z, \alpha, D)$ be the harmonic measure of α at the point z in D. We have 0 < u(z) < 1 in D

and the boundary values of u(z) are 1 on α and 0 outside α .

Theorem. The sum of the multiplicities of the critical points of the harmonic measure u(z) in the domain D is equal to m+n-2.

Proof. Let D(u) be the set of points z such that u < u(z) < 1 and $\overline{D}(u)$ be its closure. The set D(u) consists of n simply connected domains and some doubly connected domains for u which is sufficiently near to 1. These simply connected domains are bounded by the niveau curve C(u) and an arc contained in α . The doubly connected domains are bounded by a simple closed component of C(u) and a component of α which coinsides with some C_i . The characteristic of a simply connected domain is -1 and that of doubly connected domain is zero. Hence we have $\rho(D(u_0)) = -n$ for u_0 which is sufficiently near to 1.

When there is no critical point on the niveau curve C(u), the boundary of D(u) consists of a finite number of simple closed curve and so we have $\rho(D(u)) = \rho(\overline{D}(u))$.

When there is a critical point of multiplicity k-1 on the niveau curve C(u). The critical point appears in the 1-complex representing C(u) k times as 0-cell. Hence we have $\rho(\overline{D}(u)) = \rho(D(u)) + k - 1$.

When there is no critical point in the open set $D(u_2) - \bar{D}(u_1) (u_2 < u_1)$, any component of the niveau curve $C(u) (u_2 < u < u_1)$ is a simple closed curve or a simple arc which combines two end points of α . Hence the set $D(u_2) - \bar{D}(u_1)$ consists of a finite number of simply or doubly connected domains and the number of simply connected components contained in $D(u_2) - \bar{D}(u_1)$ increased by the number of 1-cells contained in the union of 1-complexes representing α is equal to the number of 0-cells contained in the union of 1-complexes representing α . Hence the complex representing α contributes the same number to the characteristic as the complex representing $D(u_2) - \bar{D}(u_1)$. Since $D(u_2) + \alpha$ $= \bar{D}(u_1) + (D(u_2) - \bar{D}(u_1))$, we have $\rho(\bar{D}(u_1)) = \rho(D(u_2))$.

Therefore the only changes in $\rho(D(u))$ are caused by changing from $\rho(D(u))$ to $\rho(\overline{D}(u))$ when u is a level of a critical point. The set D(0) is the whole domain D whose characteristic is m-2. Hence the sum of the multiplicities of the critical points of u(z) in D is equal to $\rho(D(0)) - \rho(D(u_0)) = m + n - 2$.

References

- M. Morse: Topological Methods in the Theory of Functions of a Complex Variable. Princeton (1947).
- [2] R. Nevanlinna: Eindeutige analytische Funktionen. Berlin (1936).