119.

By Jun-iti NAGATA

Department of Mathematics, University of Pittsburgh

A Note on M-Space and Topologically Complete Space

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1969)

In the previous paper [4] we have proved that every paracompact M-space with weight |A| (=the cardinality of the set A) is the perfect image of a closed subset of D(A) and a subset of N(A), where D(A) is Cantor discontinum (=the product of two points discrete spaces D_{α} , $\alpha \in A$), and N(A) is Baire's 0-dimensional space (=the product of countably many copies of the discrete space A), and also stated the following theorem without proof. (Throughout this paper we assume that A is an infinite set and that spaces are Hausdorff. As for terminologies and symbols in the present paper, see J. Nagata [3] and [4].)

Theorem 1. A space X with weight |A| is a paracompact M-space iff (=if and only if) it is homeomorphic to a closed subset of $S \times P(A)$, where S is a subspace of generalized Hilbert space H(A), and P(A) is the product of the copies I_{α} , $\alpha \in A$ of the unit interval [0, 1].

The purpose of the present paper is to give a proof of Theorem 1 and extend our study to paracompact, topologically complete spaces (in the sense of E. Čech), which form an important subclass of paracompact M-spaces.

Proof of Theorem 1. Since the sufficiency of the condition is obvious, we shall prove only the necessity. There is a perfect map (=mapping) from X onto a metric space Y with weight $\leq |A|$. Let $\{f_{\lambda} | \lambda \in A\}$ be a collection of continuous functions $|X \rightarrow [0, 1]$ such that for each point x of X and each nbd (=neighborhood) M of x, there is $\lambda \in A$ for which $f_{\lambda}(x)=1$, $f_{\lambda}(X-M)=0$.

Then we define a map $h \mid X \rightarrow Y \times P(A)$ by

 $h(X) = \varphi(x) \times (f_{\lambda}(x) | \lambda \in A), x \in X.$

It is obvious that h is one-to-one and continuous. It is also easy to show that h^{-1} is continuous. Hence h is a topological map. To show that h(X) is closed in $Y \times P(A)$, let $z = y \times (q_{\lambda} | \lambda \in A) \in Y \times P(A) - h(X)$. Then $\varphi^{-1}(y) \cap [\bigcap_{\lambda \in A} f_{\lambda}^{-1}(q_{\lambda})] = \phi$, because otherwise for every point x in the nonempty intersection h(x) = z holds, and thus $z \in h(X)$. Since each $f_{\lambda}^{-1}(q_{\lambda})$ can be expressed as $f_{\lambda}^{-1}(q_{\lambda}) = \bigcap_{n=1}^{\infty} f_{\lambda}^{-1} \left(\left[q_{\lambda} - \frac{1}{n}, q_{\lambda} + \frac{1}{n} \right] \right)$ ([] denotes a closed interval.) and since $\varphi^{-1}(y)$ is compact, there are $\lambda_{1}, \dots, \lambda_{k} \in A$ and a natural number *n* such that $\varphi^{-1}(y) \cap H = \phi$ in *X* if we put $H = \bigcap_{i=1}^{k} f_{\lambda_{i}}^{-1}$ $\left(\left[q_{\lambda_{i}} - \frac{1}{n}, q_{\lambda_{i}} + \frac{1}{n}\right]\right)$. Now, recall that φ is a closed map, and hence $V = Y - \varphi(H)$ is an open nbd of *y* in *Y*. Thus $V \times \{(p_{\lambda} | \lambda \in A) \in P(A)q_{\lambda_{i}} - \frac{1}{n} < P_{\lambda_{i}} < q_{\lambda_{i}} + \frac{1}{n}, \tau = 1, \cdots, k\}$ is a nbd of *z* in $Y \times P(A)$ which is disjoint from h(X). Therefore h(X) is closed in $Y \times P(A)$. By C.H. Dowkers's theorem (See J. Nagata [3]) *Y* is homeomorphic to a subspace *S* of H(A), and thus the theorem is proved.

Now we can specialize the above theorem in case that X is topologically complete in the sense of E. Čech. (We are indebted to Professor K. Nagami for calling our attention to the special case.) Let us begin with a lemma.

Lemma. Every complete metric space X with weight |A| is homeomorphic to a closed of H(A).

Proof. By C.H. Dowker's theorem X is homeomorphic to a subset S of H(A). Since X is topologically complete, S is a G_{δ} -set in H(A) (See J. Nagata [3]), i.e. $S = \bigcap_{n=1}^{\infty} U_n$ for open sets $U_n, n=1, 2, \cdots$ in H(A). For each natural number n let us define a continuous function f_n on U_n by

 $f_n(x) = \frac{1}{\rho(x, X - U_n)}, \quad x \in U_n, \quad \text{where } \rho \text{ denotes the metric in } H(A).$

Then $f(x) = (x, f_1(x), f_2(x), \dots), x \in S$ is a continuous map from S into $H(A) \times E^{\infty}$, where E^{∞} is the product of countably many copies of the 1-dimensional Euclidean space. We can easily show that f is a topological map and that f(S) is closed in $H(A) \times E^{\infty}$. The proof is just a copy of the proof of Kuratowski's theorem in separable case (see J. Nagata [3], p. 210). On the other hand E^{∞} is homeomorphic to separable Hilbert space by R.D. Anderson's theorem [1]. Thus $H(A) \times E^{\infty}$ is homeomorphic to H(A).

Theorem 2. A space X with weight |A| is a paracompact, topologically complete space iff it is homeomorphic to a closed subset of $H(A) \times P(A)$.

Proof. The sufficiency of the condition is obvious, because $H(A) \times P(A)$ is paracompact and topologically complete by Z. Frolik's theorem [2]. To prove the necessity, let X be a paracompact, topologically complete space with weight |A|. Then by Theorem 1 X is homeomorphic to a closed set X' of $S \times P(A)$. By Frolik's another theorem [2] there is a perfect map from X onto a complete metric space Y. Since S and Y are homeomorphic, by Lemma S can be regarded as a closed subset of H(A). Thus X' is a closed subset of $H(A) \times P(A)$.

Now, let us turn to specialize another theorem in [3] which was stated at the beginning of the present paper, too.

Theorem 3. Every paracompact, topologically complete space Y with weight |A| is the image of a closed subset of $D(A) \times N(A)$ by a perfect map.

Proof. All we need is a slight modification on the proof of the general theorem given in [3], which is assumed to be known by the reader and will be called the 'previous proof.' Since Y is paracompact and topologically complete, by Frolik's theorem [2] there is a perfect map φ from Y onto a complete metric space Z. Let \mathcal{W}_i be a locally finite open cover of Z such that $\mathcal{W}_1 > \mathcal{W}_2^* > \mathcal{W}_2 > \mathcal{W}_3^* > \cdots$ and such that mesh $\mathcal{W}_i \rightarrow 0$. Then we may assume $\mathcal{U}_i = f^{-1}(\mathcal{W}_i) = \{f^{-1}(\mathcal{W}) \mid W\}$ $\in \mathcal{W}_i$, $i=1, 2, \cdots$ in the previous proof, (where the word 'locally finite' was erroneously dropped to describe the properties of U_i .) In the previous proof we put $S = \{(\alpha_1, \alpha_2, \cdots) \in N(A) | \bigcap_{i=1}^{\infty} F(\alpha_1, \cdots, \alpha_k) \neq \phi \}$ to prove that Y is the perfect image of a closed subset of $D(A) \times S$. Thus it suffices to prove that S is closed in N(A) in the present case. Suppose $(\beta_1, \beta_2, \cdots) \in N(A) - S$. Then $\bigcap_{k=1}^{\infty} F(\beta_1, \cdots, \beta_k) = \phi$. Hence $F(\beta_1, \cdots, \beta_k) = \phi$. $\cdots \beta_k = \phi$ for some k. Because otherwise we have here a decreasing sequence $\{F(\beta_1, \dots, \beta_k) | k=1, 2, \dots\}$ of non-empty closed sets. implied by the construction of $F(\beta_1, \dots, \beta_k), F(\beta_1, \dots, \beta_k) \subset U_k$ holds for some $U_k \in \mathcal{U}_k$. Hence $\{\varphi(F(\beta_1, \dots, \beta_k)) | k=1, 2, \dots\}$ is a Cauchy filter basis in the complete metric space Z. Therefore $\bigcap_{k=1}^{n} \varphi(F(\beta_1, \cdots$ $\cdots, \beta_k) \neq \phi.$ Let $z \in \bigcap_{k=1}^{\infty} \varphi(F(\beta_1, \cdots, \beta_k)).$ Then for each k we can choose $y_k \in F(\beta_1, \dots, \beta_k) \cap \varphi^{-1}(z)$. Since $\varphi^{-1}(z)$ is compact, $\{y_k\}$ has a cluster point y in $\varphi^{-1}(z)$. Since $y \in F(\beta_1, \dots, \beta_k)$, $k=1, 2, \dots$, we contradict ourselves. Therefore $F(\beta_1, \dots, \beta_k) = \phi$ for some k. Now $N(\beta_1, \dots, \beta_k) = \{(\alpha_1, \alpha_2, \dots) \in N(A) \mid \alpha_1 = \beta_1, \dots, \alpha_u = \beta_k\}$ is a nbd of $(\beta_1, \beta_2, \cdots)$ which does not intersect S. Thus S is a closed set in N(A), and hence $D(A) \times S$ is closed in $D(A) \times N(A)$. In other words Y is the perfect image of a closed set of $D(A) \times N(A)$.

References

- R. D. Anderson: Hilbert space is homeomorphic to the countable infinite product of lines. Bull. Amer. Math. Soc., 72, 515-519 (1966).
- [2] Z. Frolik: On the topological product of paracompact spaces. Bull. de l'Acad. Polon. Sci. Ser. Math., Astr. et Phys., 8, 747-750 (1960).
- [3] J. Nagata: Modern General Topology. Amsterdam-Groningen (1968).
- [4] ----: Mappings and M-spaces. Proc. Japan Acad., 45, 140-144 (1969).