115. On the Schur Index of a Monomial Representation

By Toshihiko Yamada
Department of Mathematics, Tokyo Metropolitan University
(Comm. by Kenjiro Shoda, M. J. A., Sept. 12, 1969)

In this note we give a method of determing the Schur index of a monomial representation of a finite group which is induced from a linear character of its normal subgroup. At the same time we obtain some other results which are useful in the theory of Schur index.

Notation and Terminology. G denotes a finite group whose unit element is $1 .|G|$ is the order of $G \cdot K$ is any given field of characteristic 0 and Ω the algebraic closure of K. An irreducible character χ of G always means an absolute one afforded by a representation of the group algebra ΩG over $\Omega . \quad m_{K}(\chi)$ is the Schur index of χ over $K . K(\chi)$ is the field obtained from K by adjunction of all values $\chi(g), g \in G$. ${ }^{(S)}(K(\chi) / K)$ is the Galois group of $K(\chi)$ over K. For $\tau \in \mathbb{G}(K(\chi) / K), \chi^{\tau}$ is the character of G defined by $\chi^{\tau}(g)=\chi(g)^{\tau} . e(\chi)=|G|^{-1} \chi(1) \sum_{g \in G} \chi\left(g^{-1}\right) g$ is the minimal central idempotent of ΩG corresponding to χ. $a(\chi)$ $=\sum_{\tau \in\left(\int \mid K(x) / K\right)} e\left(\chi^{\tau}\right)$ is the identity of the simple component A of $K G$ with the property $\chi(A) \neq 0[2, \mathrm{~V}, 14.12]$. If H is a subgroup of G and ψ a character of H, ψ^{G} denotes the character of G induced from ψ. For a ring R and an integer n, R_{n} is the total matric algebra of degree n over R.

Lemma. Let H be a subgroup of G and $H g_{1}, \cdots, H g_{n}$ all the distinct right cosets of H in G. Let ψ be an irreducible character of H such that ψ^{G} is irreducible. For simplicity, set $e_{i}=g_{i}^{-1} e(\psi) g_{i}(i=1, \ldots$ $\cdots, n)$. Then we have (i) $e\left(\psi^{G}\right)=\sum_{i=1}^{n} e_{i}$, (ii) $e\left(\psi^{G}\right) \Omega G=e_{1} \Omega G+\cdots+e_{n} \Omega G$, (iii) $e_{i} e_{j}=0(i \neq j), e_{i} e_{i}=e_{i}, 1 \leq i, j \leq n$, (iv) $\left(\psi^{\tau}\right)^{G}=\left(\psi^{G}\right)^{\tau}$ for any $\tau \in \mathbb{E}$ $(K(\psi) / K)$.

Proof. (i) $e\left(\psi^{G}\right)=|G|^{-1} \psi^{G}$ (1) $\sum_{g \in G} \psi^{G}\left(g^{-1}\right) g=|H|^{-1} \psi$ (1) $\sum_{g \in G}$

$$
\sum_{i=1}^{n} \psi\left(g_{i} g^{-1} g_{i}^{-1}\right) g=\sum_{i=1}^{n} g_{i}^{-1}\left\{|H|^{-1} \psi(1) \sum_{n \in H} \psi\left(h^{-1}\right) h\right\} g_{i}=\sum_{i=1}^{n} e_{i},
$$

where $\psi(g)=0$ for $g \notin H$. (ii) It can be easily seen that $e(\psi) \Omega G \simeq e_{i} \Omega G$ ($i=1, \cdots, n$) as right ΩG-modules and that $\operatorname{dim}_{\Omega} e(\psi) \Omega G=n \psi(1)^{2}$ and that $e\left(\psi^{G}\right) \Omega G \subset e_{1} \Omega G+\cdots+e_{n} \Omega G$. Hence, $(n \psi(1))^{2}=\operatorname{dim}_{\Omega} e\left(\psi^{G}\right) \Omega G$ $\leq \operatorname{dim}_{\Omega}\left\{e_{1} \Omega G+\cdots+e_{n} \Omega G\right\} \leq n^{2} \psi(1)^{2}$. This proves (ii). (iii) We observe that $e_{i}=e\left(\psi^{G}\right) e_{i}=e_{1} e_{i}+\cdots+e_{i} e_{i}+\cdots+e_{n} e_{i}$. Since $e_{1} \Omega G+\cdots+e_{n} \Omega G$ is a direct sum, it follows that $e_{i} e_{j}=0 \quad(i \neq j), e_{i} e_{i}=e_{i}$.

$$
\begin{equation*}
\left(\psi^{\tau}\right)^{G}(g)=\sum_{j=1}^{n} \psi^{\tau}\left(g_{j} g g_{j}^{-1}\right)=\left\{\sum_{j=1}^{n} \psi\left(g_{j} g g_{j}^{-1}\right)\right\}^{\tau}=\left(\psi^{\sigma}\right)^{\tau}(g), g \in G . \tag{iv}
\end{equation*}
$$

Theorem 1. Let H be a subgroup of G whose index in G is n. Let ψ be an irreducible character of H such that the induced character ψ^{G} is irreducible. Assume that $K(\psi)=K\left(\psi^{G}\right)$. If the simple component $a(\psi) K H$ of $K H$ is isomorphic to D_{r} for a division algebra D over K and for an integer r, then the simple component $a\left(\psi^{G}\right) K G$ of $K G$ is isomorphic to $D_{r n}$. In particular, $m_{K}\left(\psi^{G}\right)=m_{K}(\psi)$.

Proof. Let $H g_{1}, \cdots, H g_{n}\left(g_{1}=1\right)$ be all the distinct right cosets of H in G. From Lemma and the assumption $K(\psi)=K\left(\psi^{G}\right)$, it follows that $a\left(\psi^{G}\right)=\sum_{\tau \in\left(\mathbb{G}\left(\bar{K}\left(\psi^{G}\right) / K\right)\right.} e\left(\left(\psi^{G}\right)^{\tau}\right)=\sum_{\tau \in \mathscr{G}(\mathbb{K}(\psi) / K)} e\left(\left(\psi^{\tau}\right)^{G}\right)=\sum_{\tau} \sum_{i=1}^{n} g_{i}^{-1} e\left(\psi^{\tau}\right) g_{i}=\sum_{i=1}^{n}$ $g_{i}^{-1} a(\psi) g_{i}$. By Lemma, $g_{i}^{-1} e\left(\psi^{\tau}\right) g_{i} \cdot g_{j}^{-1} e\left(\psi^{\tau}\right) g_{j}=0(i \neq j)$. If $\tau, \tau^{\prime} \in \mathbb{G}\left(K\left(\psi^{G}\right)\right.$ $\mid K), \tau \neq \tau^{\prime}$, then $\left(\psi^{\tau}\right)^{G} \neq\left(\psi^{\tau^{\prime}}\right)^{G}$, and so $e\left(\left(\psi^{\tau}\right)^{G}\right) \Omega G \cdot e\left(\left(\psi^{\tau^{\prime}}\right)^{G}\right) \Omega G=0$. Hence, $g_{i}^{-1} e\left(\psi^{\tau}\right) g_{i} \cdot g_{j}^{-1} e\left(\psi^{\tau^{\prime}}\right) g_{j}=0$. Thus, $g_{i}^{-1} a(\psi) g_{i} \cdot g_{j}^{-1} a(\psi) g_{j}=\sum_{\tau, \tau^{\prime}} g_{i}^{-1} e\left(\psi^{\tau}\right) g_{i} \cdot g_{j}^{-1}$ $e\left(\psi^{\tau^{\tau}}\right) g_{j}=0$, and so $g_{i}^{-1} a(\psi) K H g_{i} \cdot g_{j}^{-1} a(\psi) K H g_{j}=0(i \neq j)$. Let $\delta \in a(\psi) K H$ be an idempotent of $K H$ such that $\delta K H$ is an irreducible right $K H-$ module. Then the ring of $K H$-endomorphisms of $\delta K H$ is isomorphic to the division algebra $\delta K H \delta$, which is anti-isomorphic to D. Denote by Ξ the ring of $K G$-endomorphisms of the right $K G$-module $\delta K G$. For $\xi \in \Xi, \xi(z)=\xi(\delta z)=\xi(\delta) z, z \in \delta K G$, where $\xi(\delta) \in \delta K G$. Hencefor $\xi, \xi^{\prime} \in \Xi$, $\xi=\xi^{\prime}$ if and only if $\xi(\delta)=\xi^{\prime}(\delta)$. Meanwhile, if $\xi(\delta)=\sum_{i=1}^{n} \delta s_{i} g_{i}, s_{i} \in K H$, then $\xi(\delta)=\xi\left(\delta^{2}\right)=\xi(\delta) \delta=\sum_{i=1}^{n} \delta s_{i} g_{i} \delta=\sum_{i=1}^{n} g_{i} \cdot g_{i}^{-1} \delta s_{i} g_{i} \cdot \delta=\delta s_{1} \delta \in \delta K H \delta$, because $g_{i}^{-1} \delta s_{i} g_{i} \in g_{i}^{-1} a(\psi) K H g_{i}, \delta \in \alpha(\psi) K H$, and $g_{i}^{-1} a(\psi) K H g_{i} \cdot a(\psi) K H=0(i \neq 1)$. It follows readily that the ring Ξ is isomorphic to the division algebra $\delta K H \delta$, so that $\delta K G$ is an irreducible right $K G$-module contained in $a(\psi) K G$. From the fact that $g_{i}^{-1} a(\psi) g_{i}(i=1, \cdots, n)$ are orthogonal idempotents and $a\left(\psi^{G}\right)=\sum_{i=1}^{n} g_{i}^{-1} a(\psi) g_{i}$, it follows easily that $a\left(\psi^{G}\right) K G$ $=g_{1}^{-1} a(\psi) g_{1} K G+\cdots+g_{n}^{-1} a(\psi) g_{n} K G$. Hence $a\left(\psi^{G}\right) K G$ contains $\delta K G$ whose $K G$-endomorphism ring is anti-isomorphic to D. So we have $a\left(\psi^{G}\right) K G \simeq D_{x}$ for some integer x. As $g_{i}^{-1} a(\psi) g_{i} K G$ is isomorphic to $a(\psi) K G$ as right $K G$-modules and $\operatorname{dim}_{K} \alpha(\psi) K G=n \cdot \operatorname{dim}_{K} \alpha(\psi) K H$ $=n \cdot \operatorname{dim}_{K} D_{r}=n r^{2}(D: K)$, we have $\operatorname{dim}_{K} a\left(\psi^{G}\right) K G=n^{2} r^{2}(D: K)$. Thus, $\alpha\left(\psi^{G}\right) K G \simeq D_{r n}$.

Theorem 2. Let H be a normal subgroup of G and ψ a linear character of H such that ψ^{G} is irreducible. Set $F=\left\{g \in G ; \psi^{g}=\psi^{\tau(g)}\right.$ for some $\tau(g) \in \mathscr{G}(K(\psi) / K)\}$, where ψ^{g} is defined by $\psi^{g}(h)=\psi\left(g h g^{-1}\right)$, $h \in H$. Let $H f_{1}, \cdots, H f_{n}$ be all the distinct cosets of H in F, and $f_{i} f_{j}$ $=h_{i j} f_{\nu(i, j)}, h_{i j} \in H . \quad$ Set $\tau\left(f_{i}\right)=\tau_{i}$ and $\beta\left(\tau_{i}, \tau_{j}\right)=\psi\left(h_{i j}\right), 1 \leq i, j \leq n$.

Then we have (i) $F / H \simeq\left\{\tau_{1}, \cdots, \tau_{n}\right\} \simeq \mathbb{G}\left(K(\psi) / K\left(\psi^{F}\right)\right)$, (ii) β is a factor set of $\mathfrak{G}\left(K(\psi) / K\left(\psi^{F}\right)\right)$ consisting of roots of unity and the simple algebra $a\left(\psi^{F}\right) K F$ is isomorphic to the crossed product $\left(\beta\left(\tau_{i}, \tau_{j}\right), K(\psi) / K\left(\psi^{F}\right)\right)$, (iii) $m_{K}\left(\psi^{G}\right)=m_{K}\left(\psi^{F}\right)$. In fact, if $a\left(\psi^{F}\right) K F \simeq D_{r}$ for a division algebra over K and for an integer r, then $a\left(\psi^{G}\right) K G \simeq D_{r t}, t=(G: F)$.

Proof. As ψ^{F} is irreducible, $\psi^{f}=\psi$ if and only if $f \in H$. So the mapping: $f \mapsto \tau(f), f \in F$ is a homomorphism from F into $\mathfrak{G s}(K(\psi) / K)$ whose kernel is H. Hence $F / H \simeq\left\{\tau_{1}, \cdots, \tau_{n}\right\}$. For any $f \in F,\left(\psi^{F}\right)^{\tau_{i}}(f)$ $=\sum_{j=1}^{n} \psi\left(f_{j} f f_{j}^{-1}\right)^{\tau_{i}}=\sum_{j=1}^{n} \psi^{\tau_{j} \tau_{i}}(f)=\psi^{F}(f)$, and so $\left(\psi^{F}\right)^{\tau_{i}}=\psi^{F}(i=1, \cdots, n)$. Conversely, if $\psi^{F}=\left(\psi^{F}\right)^{\tau}=\left(\psi^{\tau}\right)^{F}$ for some $\tau \in \mathbb{G}(K(\psi) / K)$, there exists $f \in F$ such that $\psi^{\tau}=\psi^{f}[1,45.6]$. Hence τ is in $\left\{\tau_{1}, \cdots, \tau_{n}\right\}$. Therefore, ©($\left(K(\psi) / K\left(\psi^{F}\right)\right) \simeq\left\{\tau_{1}, \cdots, \tau_{n}\right\}$. Remark that $K(\psi) \supset K\left(\psi^{F}\right) \supset K\left(\psi^{G}\right)$. If $\psi^{G}=\left(\psi^{G}\right)^{\tau}=\left(\psi^{\tau}\right)^{G}$ for $\tau \in \mathscr{G}(K(\psi) / K)$, there exists $g \in G$ such that $\psi^{g}=\psi^{\tau}$. Hence $g \in F$ and $\tau \in \mathscr{G}\left(K(\psi) / K\left(\psi^{F}\right)\right)$. This shows that $K\left(\psi^{F}\right)$ $=K\left(\psi^{G}\right)$. Then the assertion (iii) is an immediate consequence of Theorem 1. If U is the matrix representation of F with the character $\psi^{F}, a\left(\psi^{F}\right) K F$ is isomorphic to the enveloping algebra $\operatorname{env}_{K} U$ $=\left\{\sum_{f \in F} \alpha_{f} U(f) ; \alpha_{f} \in K\right\}$ of U over K. For $h \in H, U(h)$ is the diagonal matrix $\left[\psi^{\tau_{1}}(h), \cdots, \psi^{\tau_{n}}(h)\right]$ with the diagonal elements $\psi^{\tau_{1}}(h), \cdots, \psi^{\tau_{n}}(h)$, and so $\operatorname{env}_{K} U^{\prime}=\left\{\left[\theta^{\tau_{1}}, \cdots, \theta^{\tau_{n}}\right] ; \theta \in K(\psi)\right\} \simeq K(\psi)$, where U^{\prime} denotes the restriction of U to H. It is easily seen that env $U=\sum_{i=1}^{n} \operatorname{env} U^{\prime} \cdot U\left(f_{i}\right)$ and that the mapping $\tilde{\tau}_{i}: T \mapsto U\left(f_{i}\right) T U\left(f_{i}\right)^{-1}, T \in \operatorname{env}\left(U^{\prime}\right)$ is the automorphism of the field env U^{\prime} corresponding to $\tau_{i} \in \mathbb{\circlearrowleft}\left(K(\psi) / K\left(\psi^{F}\right)\right)$ and that $\left\{\tilde{\tau}_{1}, \cdots, \tilde{\tau}_{n}\right\}$ is the Galois group of the extension env $U^{\prime} / K\left(\psi^{F}\right) \cdot 1_{n}, 1_{n}$ being the identity of Ω_{n}. Now it is well known that $K\left(\psi^{F}\right) \cdot 1_{n}$ is the center of env U and (env $\left.U: K\left(\psi^{F}\right) \cdot 1_{n}\right)=n^{2}$. Thus, we have the expression of $\operatorname{env}_{K} U$ as crossed product: $\operatorname{env}_{K}(U)=\sum_{i=1}^{n} \operatorname{env}_{K} U^{\prime} \cdot U\left(f_{i}\right)=\left(\tilde{\beta}\left(\tilde{\tau}_{i}, \tilde{\tau}_{j}\right)\right.$, $\left.\operatorname{env}_{K} U^{\prime} / K\left(\psi^{F}\right) \cdot 1_{n}\right) \quad$ with relations $\quad U\left(f_{i}\right) T U\left(f_{i}\right)^{-1}=T^{z_{i}}, T \in \operatorname{env}_{K} U^{\prime}$, $U\left(f_{i}\right) U\left(f_{j}\right)=U\left(h_{i j}\right) U\left(f_{\nu(i, j)}\right), \tilde{\beta}\left(\tilde{\tau}_{i}, \tilde{\tau}_{j}\right)=U\left(h_{i j}\right), 1 \leq i, j \leq n$. Clearly, this crossed product is isomorphic to the crossed product ($\beta\left(\tau_{i}, \tau_{j}\right), K(\psi)$ $/ K\left(\psi^{F}\right)$).

As for the crossed product $A=\left(\beta\left(\tau_{i}, \tau_{j}\right), K\left(\psi^{\prime}\right) / K\left(\psi^{F}\right)\right)$ in Theorem 2 , we recall that if K is a finite extension of the rational p-adic number field Q_{p} for a prime p, then the \mathfrak{P}-invariant of A equals $\rho \cdot\left(K\left(\psi^{F}\right)\right.$: $\left.Q_{p}\left(\psi^{F}\right)\right)$ where ρ is the \mathfrak{p}-invariant of $B=\left(\beta\left(\tau_{i}, \tau_{j}\right), Q_{p}(\psi) / Q_{p}\left(\psi^{F}\right)\right)$. Here \mathfrak{B} and \mathfrak{p} are the prime ideals of $K\left(\psi^{F}\right)$ and $Q_{p}\left(\psi^{F}\right)$ respectively, that divide p. Now B is a "Kreisalgebra" and its \mathfrak{p}-invariant was calculated by Witt [3].

References

[1] C. W. Curtis and I. Reiner: Repesentation Theory of Finite Groups and Associative Algebras. Interscience, New York (1962).
[2] B. Huppert: Endliche Gruppen. I. Springer, Berlin (1967).
[3] E. Witt: Die algebraische Struktur des Gruppenringes einer endlichen Gruppe über einem Zahlenkörper. J. reine angew. Math., 190, 231-245 (1952).

