159. Products of M-Spaces

By Takesi ISIWATA

(Comm. by Kinjirô KUNUGI, M. J. A., Oct. 13, 1969)

The spaces considered here are always completely regular T_1 spaces and mappings are continuous. We have showed in the previous paper [4] that the product of *M*-spaces need not be an *M*-space. In this paper, introducing a new class $\mathbb{C}(M)$ of *M*-spaces, we shall prove in § 2 the following main theorem:

 $X \in \mathfrak{C}(M)$ if and only if the product $X \times Y$ is an M-space for every M-space Y.

In § 3, we shall show that $\mathfrak{C}(M)$ contains the class $\mathfrak{C}(*)$ which contains all *M*-spaces *X* such that *X* satisfies one of the following conditions: (a) *X* satisfies the first axiom of countability, (b) *X* is locally compact and (c)*X* is paracompact (see [2], p. 897), moreover $\mathfrak{C}(M)$ contains the class $\mathfrak{C}(C)$ (§1 below).

§1. Definitions and preliminaries. A space X is called an *M*-space, the notion of which is introduced by K. Morita [6], if there exists a normal sequence $\{\mathcal{U}_i\}$ of open coverings of X satisfying the following condition (M):

If $\{K_i\}$ is a sequence of non-empty closed subsets of X such

(M) that $K_{i+1} \subset K_i$ and $K_i \subset \operatorname{St}(x_0, \mathcal{U}_i)$ for each *i* and some fixed point $x_0 \in X$, then $\cap K_i \neq \emptyset$.

In the following we call $\{\mathcal{U}_i\}$ mentioned above, for simplicity, an *M*normal sequence of X. A sequence $\{x_i\}$ in X is said to be an (M)sequence if $x_i \in \operatorname{St}(x_0, \mathcal{U}_i)$ for every *i* and some fixed point x_0 of X and some *M*-normal sequence $\{\mathcal{U}_i\}$ of X. In [2] the class $\mathfrak{C}(*)$ has been introduced as the set of all *M*-spaces satisfying the following condition (*):

(*) Any (*M*)-sequence has a subsequence whose closure is compact. The symbol $\mathfrak{S}(C)$ denotes the class of all spaces P such that the product $P \times Q$ is countably compact for every countably compact space Q. This class has been introduced by Frolik [1] and it is obvious that $P \in \mathfrak{S}(C)$ implies that $F \in \mathfrak{S}(C)$ for every closed subset F of P. We shall consider the class $\mathfrak{S}(M)$ consisting of all *M*-spaces *X* satisfying the following condition (CM):

(CM) For any discrete subsequence N of any (M)-sequence of X and for any non-empty subset S of K-X where K is any compactification of X, the subspace $N \cup S$ of K is not countably compact. For a mapping φ from X onto Y, we denote by Φ the Stone-extension of φ from βX onto βY .

1.1 ([1], Theorem 3.3). $P \notin \mathfrak{C}(C)$ if and only if P satisfies the following condition: There exists an infinite discrete subset N of P such that for every compactification K of P there exists a subset S of K-P such that the subspace $N \cup S$ of K is countably compact.

1.2 ([1], 3.9). The product of a countable subfamily of $\mathbb{C}(C)$ belongs to $\mathbb{C}(C)$.

From 1.1 we have

1.3 ([5], Theorem 1.6). The following conditions are equivalent. 1) $X \in \mathbb{C}(C)$.

2) For every infinite discrete subset N of X, there is a compactification K such that for any subset S of K-X, the subspace $N \cup S$ of K is not countably compact.

3) For every infinite discrete subset N of X, the subspace $N \cup S$ of K is not countably compact where K is any compactification of X and S is any subset of K-X.

1.4. Similarly to 1.3), we can replace the phrase "K is any compactification of X" by the phrase "K is a compactification of X" in the condition (CM).

1.5 ([2], Lemma 2.1). Let $\{U_i\}$ and $[\mathbb{CV}_i\}$ be normal sequences of X and Y respectively. Then $\{\mathcal{W}_i; \mathcal{W}_i = \{U \times V; U \in U_i, V \in \mathbb{CV}_i\}\}$ is a normal sequence of $X \times Y$.

1.6 ([2], Lemma 2.2). For each n, let $\{U(n, i); i=1, 2, \cdots\}$ be a normal sequence of X_n . Then $\{U_i; U_i=\{U_1\times\cdots\times U_i\times \mathbf{P}_{n>i}X_n; U_j\in U(j, i), j=1, 2, \cdots, i\}\}$ is a normal sequence of $\mathbf{P}X_n$.

§2. Proof of Main Theorem. Necessity. Let $\{\mathcal{U}_i\}$ and $\{\mathcal{V}_i\}$ be *M*-sequences of X and Y respectively. $\{\mathcal{W}_i\}$ constructed in (1.5) is We shall show that $\{\mathcal{W}_i\}$ satisfies the condition (M), or normal. equivalently, the condition (M_0) : if $\{(x_i, y_i)\}$ is an (M)-sequence with respect to $\{\mathcal{W}_i\}$, then $\{(x_i, y_i)\}$ has an accumulation point (see [2], p. 897). By the methods of construction of $\{\mathcal{W}_i\}$, it is obvious that $\{x_i\}$ and $\{y_i\}$ are (M)-sequences of X and Y respectively. Since every infinite Hausdorff space contains an infinite discrete subset, there exists a discrete subsequence N of $\{x_i\}$. $cl_{aX}N$ is a compactification of N. $X \in \mathfrak{C}(M)$ implies that $N \cup S$ is not countably compact for every subset S of $\beta X - X$. If we restrict S to $cl_{\beta X}N - N$, then according to (1.3) we have $\operatorname{cl}_X N \in \mathfrak{C}(C)$ (notice that the closure of an (M)-sequence in an Mspace is countably compact). Let $L = \{y_i; i=1, 2, \dots\}$. Since Y is an *M*-space and $\{y_i\}$ is an (*M*)-sequence, $cl_v L$ is countably compact. Thus $cl_X N \times cl_Y L$ is also countably compact and hence $\{(x_i, y_i)\}$ has an accumulation point, which leads to the fact that $X \times Y$ is an *M*-space.

Sufficiency. Now suppose that there exists an (M)-sequence of an M-space X whose some discrete subsequence $N = \{x_i\}$ has the property such that the subspace $N \cup S$ of K is countably compact where K is a compactification of X and S is some subset of K-X. Without loss of generality we can assume that S is contained in $cl_{\kappa}N-N$. We shall show that there is a countably compact space Y such that the product $Y \times Y$ is not an M-space (notice that every countably compact space is an M-space). X being an M-space, $cl_{\chi}N$ is countably compact and hence there exists a point x^* in $cl_{\chi}N-N$. Let us put $Y=N \cup S \cup \{x^*\}$. Y is obviously countably compact. From the assumption that $X \times Y$ is an M-space and hence $cl_{\chi}N \times Y$ is also an M-space, we shall deduce a contradiction. Let $\{\mathcal{W}_i\}$ be an M-normal sequence of $L \times Y$ where $L=cl_{\chi}N$. Since $x^* \in L-N$, we have a subsequence $\{x_{n_i}\}$ of N such that

$$(x_{n_i}, x_{n_i}) \in \operatorname{St}((x^*, x^*), \mathcal{W}_i)$$

for each i (change indices if necessary). Let U_i be an open neighborhood (in K) of x^* such that for each i

$$\operatorname{cl}_k U_i \cap \{x_1, x_2, \cdots, x_i\} = \emptyset$$

and

$$(\operatorname{cl}_{\kappa} U_i \times \operatorname{cl}_{\kappa} U_i) \cap (L \times Y) \subset \operatorname{St}((x^*, x^*), \mathcal{W}_i)$$

On the other hand, since $\{cl_{\kappa}U_i \cap (N \cup S)\}$ has a finite intersection property and $N \cup S$ is countably compact, its total intersection contains a point s^* . By the method of construction of $\{U_i\}$ it is easily seen that $s^* \in S$. $s^* \neq x^*$ implies that there exists an open neighborhood V (in K) of s^* such that $x^* \notin cl_{\kappa}V$. Let us put

 $K_i = \operatorname{cl}_{L \times Y}((U_i \times U_i) \cap (V \times V)) \cap \varDelta(N)$

where $\Delta(N)$ is the diagonal of $N \times N$. Obviously $K_i \subset \operatorname{St}((x^*, x^*), \mathcal{W}_i)$ for each *i* and hence we have $\cap K_i \neq \emptyset$ by the condition (M) because $L \times Y$ is an *M*-space. On the other hand, $\operatorname{cl}_K U_i \cap \{x_1, x_2, \dots, x_i\} = \emptyset$ implies that $K_i \cap (\{x_1, x_2, \dots, x_i\} \times \{x_1, x_2, \dots, \dots, x_i\}) = \emptyset$ and hence $(\cap K_i) \cap (N \times N) = \emptyset$. Moreover $x^* \times \operatorname{cl}_K V$ leads to $(\cap K_i) \cap (L \times Y) = \emptyset$, i.e., $\cap K_i = \emptyset$, which is a contradiction.

§3. Properties of the class $\mathfrak{C}(M)$. 3.1. $\mathfrak{C}(C) \subset \mathfrak{C}(M)$. Let $X \in \mathfrak{C}(C)$. Since X is countably compact, we can take as an M-normal sequence $\{\mathcal{U}_i\}$ a sequence of coverings each of which consists of only one element X and hence any discrete sequence N is an (M)-sequence with respect to $\{\mathcal{U}_i\}$, which shows that $X \in \mathfrak{C}(M)$.

3.2. $\mathbb{S}(*) \subset \mathbb{S}(M)$. Let $X \in \mathbb{S}(*)$. For a discrete subsequence of an (M)-sequence, there exists a subsequence N whose closure is compact by the condition (*). This implies that for any compactification K of X and any subset S of K-X, the subspace $N \cup S$ of K is not countably compact. This shows that $X \in \mathbb{S}(M)$.

From the proof of sufficiency and the fact that countably compact

No. 8]

spaces are *M*-space we have the following

3.3. Corollary. $X \in \mathfrak{C}(M)$ if and only if the product $X \times Y$ is an M-space for every countably compact space Y.

Let $X_n \in \mathfrak{C}(M)$ and $X = \mathbf{P}X_n$ and $\{x(i)\}$ be a discrete sequence of X. Without loss of generality, we can select a suitable subsequence $\{x(i_n)\}$ of $\{x(i)\}$ whose projection $\{x_j(i_n)\}$ on X_j is discrete. By this fact and (1.2) and (1.5) we have

3.4. If $X_n \in \mathfrak{C}(M)$ $(n=1, 2, \dots)$, then PX_n is an M-space.

3.5. If φ is a perfect mapping from X onto Y and $Y \in \mathfrak{C}(M)$, then $X \in \mathfrak{C}(M)$.

Let Z be any M-space. The mapping $\psi: X \times Z \to Y \times Z$ defined by $\psi(x, z) = (\varphi(x), z)$ is perfect and hence $X \times Z$ is an M-space.

3.6. Let φ be a quasi-perfect mapping from X onto Y and $X \in \mathfrak{C}(M)$. If X or Y is normal, then $Y \in \mathfrak{C}(M)$.

From ([3], [7]), Y is an M-space. Let N be a discrete subsequence of an (M)-sequence of Y with respect to an M-normal sequence $\{U_i\}$ such that the subspace $N \cup S$ is countably compact for some subset S of $\beta Y - Y$. $\Phi^{-1}(N) \cup \Phi^{-1}(S)$ is countably compact. Let x_y be a point of $\varphi^{-1}(y)$ and put $N_1 = \{x_y; y \in N\}$. It is obvious that N_1 is a discrete (M)-sequence with respect to an (M)-sequence $\{\varphi^{-1}(U_i)\}$ and $N_1 \cup \Phi^{-1}(S)$ is countably compact, which completes the proof.

References

- [1] Z. Frolik: The topological products of countably compact spaces. Czech. Math. J., **10** (85), 329-338 (1960).
- [2] T. Ishii, M. Tsuda, and S. Kunugi: On the products of *M*-spaces. I, II. Proc. Japan Acad., 44, 897-900, 901-903 (1968).
- [3] T. Ishii: On closed mappings and M-spaces. I, II. Proc. Japan Acad., 43, 752-756, 757-761 (1967).
- [4] T. Isiwata: The product of *M*-spaces need not be an *M*-space. Proc. Japan Acad., 45, 154-156 (1969).
- [5] —: Some classes of countably compact spaces. Czech. Math. J., 14 (89), 22-26 (1964).
- [6] K. Morita: Products of normal spaces and with metric spaces. Math. Ann., 154, 356-382 (1964).
- [7] ——: Some properties of *M*-spaces. Proc. Japan Acad., 43, 869-872 (1967).