157. Mixed Problems for Degenerate Hyperbolic Equations of Second Order

By Akira NAKAOKA

(Comm. by Kinjirô KUNUGI, M. J. A., Oct. 13, 1969)

1. Introduction. In this note we shall deal with the following equation:

(1.1)
$$u_{tt} = p(x)u_{xx} + f(x, t)$$

in $R_+^1 \times (0, \infty)$, where p(x) is a real valued function such that;

(i) $p(x) \in C^{0}(\bar{R}^{1}_{+})$ and $0 \leq p(x)$ (p(x) never vanishes except at x=0)

(ii) for $x \to \infty$, p(x) remains bounded, and moreover bounded away from zero

(iii) $p(x)^{-1}$ is summable in the neighborhood of the origin.

Our boundary conditions are as follows:

Case I u=0 at x=0

Case II $u_x + hu = 0$ at x = 0 (h is a real number).

Since (1.1) is not strictly hyperbolic, we might not expect the mixed problems with above boundary conditions be L^2 -well-posed, but we can show that our problem is well suited on a certain function (Hilbert) space.

2. Function spaces $L^2(\mathbb{R}^1_+, p^{-1})$ and $H^2(\mathbb{R}^1_+, p)$. In this section we establish two function spaces in which we develop our arguments.

Definition 2.1. A distribution u(x) on R_+^1 is said to be in $L^2(R_+^1, p^{-1})$, if and only if

(2.1)
$$||u||_{p^{-1}}^2 = \int_0^\infty |u|^2 p^{-1} dx$$

is finite.

Definition 2.2. A distribution u(x) on R_+^1 is said to be in $H^2(R_+^1, p)$, if and only if

(2.2)
$$||u||_{2,p}^{2} = \int_{0}^{\infty} (|u|^{2} + p(x)|u_{xx}|^{2}) dx$$

is finite.

Lemma 2.3. If u(x) belongs to $H^2(\mathbb{R}^1_+, p)$, then $u_x(0) = \lim u_x(x)$ exists and

(2.3)
$$|u_x(0)|^2 \leqslant \varepsilon \int_0^\infty p(x) |u_{xx}|^2 dx + C(\varepsilon) \int_0^\infty |u|^2 dx$$

is valid for any positive ε .

Lemma 2.4. If u(x) is in $H^2(R^1_+, p)$, then u(x) is in $H^1(R^1_+)$ and (2.4) $\int_0^\infty |u_x|^2 dx \le \varepsilon \int_0^\infty p(x) |u_{xx}|^2 dx + C(\varepsilon) \int_0^\infty |u|^2 dx$ holds for any positive ε .

Lemma 2.5. Suppose u(x) is in $H^1(\mathbb{R}^1_+)$. We have

(2.5)
$$\int_{0}^{\infty} p^{-1} |u|^{2} dx \leq \text{const. } ||u||_{1}^{2}.$$

Lemma 2.6. Let u(x) be in $H^2(\mathbb{R}^1_+, p)$ and v(x) be in $H^1(\mathbb{R}^1_+)$, then we obtain the following Green's formula

(2.6)
$$\int_0^\infty u_{xx} \cdot \bar{v} \, dx = -\int_0^\infty u_x \cdot \bar{v}_x \, dx - u_x(0) \cdot \overline{v(0)}.$$

3. Stationary problems. Let us denote

$$D(R_{+}^{1}, p) = \{ u \in H^{2}(R_{+}^{1}, p) ; u(x) = 0 \text{ at } x = 0 \}$$

and denote

7

$$V(R_{+}^{1}, p) = \{ u \in H^{2}(R_{+}^{1}, p) ; u_{x}(x) + hu(x) = 0 \text{ at } x = 0 \}.$$

Proposition 3.1. Let $c(\neq 0)$ be a real number, then $-p(x)D_x^2 + c^2$ is a bijection from $D(R_+^1, p)$ onto $L^2(R_+^1, p^{-1})$.

Proof. Suppose $-p(x)u_{xx}+c^2u=0$, then it follows

(3.1)
$$-\int_0^\infty u_{xx} \cdot \bar{u} \, dx + c^2 \! \int_0^\infty p(x)^{-1} |u|^2 \, dx = 0,$$

hence by Lemma 2.6. we have

(3.2)
$$\int_0^\infty |u_x|^2 dx + c^2 \int_0^\infty p(x)^{-1} |u|^2 dx = 0,$$

thus u must be identically zero. Now consider the following sesquilinear form on $H_0^1(R_+^1)$:

(3.3) $B[u, v] = (u_x, v_x) + c^2(u, v)_{p-1},$

where $(,)_{p^{-1}}$ denotes the inner product of $L^2(R^1_+, p^{-1})$, then we can see easily, by Lemma 2.5., B[u, u] gives an equivalent norm to the usual one in $H^1_0(R^1_+)$. Thus by the representation theorem of Riesz, we can have a unique element u(x) in $H^1_0(R^1_+)$ such that for any given g(x) in $H^{-1}_0(R^1_+)$

 $\begin{array}{ll} (3.4) & B[u,v] = \langle g, \bar{v} \rangle \\ \text{holds for any } v \text{ in } H^{\scriptscriptstyle 1}_0(R^{\scriptscriptstyle 1}_+) \text{ and this shows } u(x) \text{ satisfies as a distribution} \\ (3.5) & -u_{xx} + p(x)^{-1}c^2u = g. \end{array}$

Since we can see $p(x)^{-1}f(x)$ belongs to $H_0^{-1}(R_+^1)$ by Lemma 2.5. if f(x) is in $L^2(R_+^1, p^{-1})$, taking $p(x)^{-1}f(x)$ as g(x) we have

$$(3.6) -p(x)u_{xx}+c^2u=f$$

and finally we can see u(x) is in $D(R_+^1, p)$. This completes the proof.

Proposition 3.2. If real β is large enough in its absolute value, then $-p(x)D_x^2 + \beta^2$ is a bijective mapping from $N(R_+^1, p)$ on to $L^2(R_+^1, p^{-1})$.

Proof. Suppose
$$-p(x)u_{xx} + \beta^2 u = 0$$
, then we have

$$(3.7) (u_x, u_x) + \beta^2 (u, u)_{p-1} - h |u(0)|^2 = 0.$$

Hence if β^2 is sufficiently large, we obtain u(x) = 0 identically.

Consider a sesqui-linear from on $H^1(\mathbb{R}^1_+)$ given by

(3.8) $B_{\beta}[u, v] = (u_x, v_x) + \beta^2(u, v)_{p-1} - hu(0)\overline{v(0)},$

then it can be easily seen that $B_{\beta}[u, u]$ gives an equivalent norm to the usual one in $H^{1}(\mathbb{R}^{1}_{+})$, if β^{2} is large enough. Thus for any given g in $H^{1}(\mathbb{R}^{1}_{+})'$, we can find a unique element u(x) in $H^{1}(\mathbb{R}^{1}_{+})$ such that for all v(x) in $H^{1}(\mathbb{R}^{1}_{+})$,

(3.9) $B_{\beta}[u, v] = \langle g, \bar{v} \rangle.$ Taking $p(x)^{-1}f(x)$ as g, where f(x) is in $L^2(R_+^1, p^{-1})$, we have (3.10) $-u_{xx} + \beta^2 p(x)^{-1} u = p(x)^{-1} f(x)$ in the sense of distribution and observing (2.6), we can accomplish the proof.

4. Evolution equation and existence and estimate of solution. We introduce two Hilbert spaces attached to Case I and Case II.

(4.1)
$$\begin{aligned} \mathcal{H}_1 &= H_0^1(R_+^1) \times L^2(R_+^1, p^{-1}) \\ \mathcal{H}_2 &= H^1(R_+^1) \times L^2(R_+^1, p^{-1}) \end{aligned}$$

We treat (1.1) as an evolution equation. Set

 $(4.2) u_1 = u, u_2 = u_t,$

then (1.1) is reduced to

(4.3) $D_t U(t) = A U(t) + F(t),$ where $U(t) = {}^t (y_t(t), y_t(t)), F(t) = {}^t (0, f(t))$ and

(4.4)
$$A = \begin{bmatrix} 0 & , & 1 \\ p(x)D_x^2 & 0 \end{bmatrix}.$$

According to Case I and Case II, we take the definition domain of A as follows

(4.5) $D(A)_1 = D(R^1_+, p) \times H^1_0(R^1_+) \\ D(A)_2 = N(R^1_+, p) \times H^1(R^1_+).$

We note $D(A)_1$ and $D(A)_2$ are dense in \mathcal{H}_1 and \mathcal{H}_2 respectively.

Lemma 4.1. It holds the following estimates

(4.6) $|\operatorname{Re}(AU, U)\mathcal{H}_j| \leq C_j(U, U)\mathcal{H}_j$ for all U in $D(A)_i$ (j=1, 2).

Proposition 4.2. If the absolute value of real λ is large enough, then $A - \lambda I$ is a bijective mapping from $D(A)_j$ onto \mathcal{H}_j and it holds with some positive β

(4.7) $\|(A - \lambda I)^{-1}\|_{\mathcal{H}_j} \leq (|\lambda| - \beta)^{-1} \quad (|\lambda| > \beta) \ (j=1, 2).$ Thus the direct application of semi-group theory leads us to

Theorem 4.3. For any initial deta $(u_0(x), u_1(x))$ in $D(A)_j$ and for any f(x, t) in $\mathcal{E}_t^1(L^2(\mathbb{R}_+^1, p^{-1}))$, there exists a unique solution u(x, t) of (1.1) such that $(u(t), u_t(t), u_{t_1}(t))$ is continuous in $H^2(\mathbb{R}_+^1, p) \times H^1(\mathbb{R}_+^1)$ $\times L^2(\mathbb{R}_+^1, p^{-1}).$

For the energy estimate, we have

Theorem 4.4. For the solution u(x, t) of (1.1) belonging to $\mathcal{E}^{0}_{t}(D(A)_{t}) \cap \mathcal{E}^{1}_{t}(H^{1}(R^{1}_{+})) \cap \mathcal{E}^{2}_{t}(L^{2}(R^{1}_{+}, p^{-1}))$, it follows

(4.8)
$$||u(t)||_{2,p} + ||u_t(t)||_1 + ||u_{tt}(t)||_{p^{-1}} \leq Ce^{\theta t} (||u_0||_{2,p} + ||u_1||_1 + ||f(0)||_{p^{-1}} + \int_0^t ||f'(s)||_{p^{-1}} ds).$$

References

- S. Mizohata: Quelques problèmes au bord, du type mixte, pour des équations hyperboliques. Collège de France, 23-66 (1966-67).
- [2] K. Yosida: An operator theoretical integration of the wave equations.
 J. Math. Soc. Japan, 8, 77-92 (1956).